![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.2 反函数的求导法则
已经解决了对数函数和三角函数的求导公式,下面需要解决它们的反函数指数函数和反三角函数的求导,为此给出如下定理.
定理2 如果函数x=φ(y)在区间I内单调、可导,且φ(y)'≠0,则其反函数y=f(x)在相应区间内也可导,且
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059008.jpg?sign=1738879879-8eNHQYNv5501GpNNiQrdMfe1YSe1bRh7-0-85c82ee19180cee55098b4851296ae94)
证明 由于互为反函数x=φ(y)与y=f(x)在各自相应的区间内单调性是一致的,所以,当Δx≠0时,Δy≠0,则
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059009.jpg?sign=1738879879-zKMNdQK1G1M3XDRy2rV2fjbNY97PsxKL-0-428540dd07e17248e9042ba0036ad7c6)
函数x=φ(y)在区间I内可导且φ(y)'≠0,则函数x=φ(y)在区间I内必连续,则其反函数y=f(x)在相应区间内也连续,即当Δx→0时,Δy→0,所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059010.jpg?sign=1738879879-NT5cztwjVQJz8RANkHe034pTFikGBNUs-0-ff08cf12b8e20beb938afa340c132511)
即
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060001.jpg?sign=1738879879-wYp7rKRiY2BvAQt9etzlyCoCek0JJL4o-0-ae3157c5d723a223e40c03eba9ab8f78)
简言之,某函数反函数的导数等于该函数导数的倒数.
例6 求函数y=arcsinx和y=arctanx的导数.
解 因为y=arcsinx(-1<x<1)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060004.jpg?sign=1738879879-Yb11Vycdyth34p0B7cXu8u6SDVljl04n-0-d738e945b1c0152ca16838df1e26614e)
因为y=arctanx(-∞<x<+∞)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060006.jpg?sign=1738879879-FFftXE6C6zBlTzPgHagMQBQCWAeBTLl2-0-8b77499ca1bcd758e3961feb9d28c904)
所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060007.jpg?sign=1738879879-GY5PK0kHW0tLZerUtsfy5XF6zIO5pJ0j-0-bc183f9d75bd2d36172294b69970b5a5)
同理可推得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060008.jpg?sign=1738879879-hXjS0EmRIrd7tIRZsjOUodIW74KJc9BD-0-a11fe26a0ec7a59ca118bc887c74605b)
(ax)'=axlna,(ex)'=ex.
例7 求函数的导数.
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060010.jpg?sign=1738879879-tebLwYXK5sXrtkCsW3ku7A1RTI8qh9EK-0-2a060775d6982ee4bac8c1dd2c928693)