![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.1 四则运算法则
定理1 设函数u=u(x)及v=v(x)均在点x处可导,那么它们的和、差、积、商(除分母为零的点外)也均在点x处可导,且
(1)(u±v)'=u'±v';
(2)(uv)'=u'v+uv';
(3).
定理中(1),(2)可以推广到有限个函数的情形.
推论1[cu(x)]'=cu'(x)(c为常数);
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00058005.jpg?sign=1738879953-2DWyPpkaZzZmkyS4lqQXAtEIwJQcGn01-0-819a3494005c80223b364deaa7847b07)
例1 已知函数3-3x2+,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00058007.jpg?sign=1738879953-rpwAUEuxsXSaSzs4l4qPkvlFbOIbyzQi-0-287d7315604f4f866b38696d21218a77)
例2 已知函数,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059001.jpg?sign=1738879953-EzXjLgMro1EAFSY30ImWijfbu5lIrIP9-0-848ba6bb5ca9492d64fe2f0ab39ce7c9)
例3 已知函数f(x)=xcosxlnx,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059002.jpg?sign=1738879953-48qxyYSp0PoHb3y9WGSNZqiw03l5LeXO-0-5ed549b8edef0a761802980529c005c1)
例4 已知函数x,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059004.jpg?sign=1738879953-P8bapYgLY7It3UdZAwQf8UIC0cQv4eZ7-0-8d40a4d120ef039a9fd78e5fa14b445d)
发现:因为 ,ln2都是常数,所以
,(ln2)'=0.
例5 证明(tanx)'=sec2x.
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059007.jpg?sign=1738879953-A5kbMKJQaiUDLtEwXqi0io6fUeEC8725-0-42858538b91cfecffc2cdb5092c278f4)
所以
(tanx)'=sec2x.
同理可证明
(cotx)'=-csc2x,(secx)'=secxtanx,(cscx)'=-cscxcotx.