![数学建模与数学规划:方法、案例及编程实战(Python+COPT/Gurobi实现)](https://wfqqreader-1252317822.image.myqcloud.com/cover/577/52521577/b_52521577.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.2.7 半定规划
半定规划(Semidefinite Programming,SDP)的目标函数为线性表达式,约束条件包含半正定约束。在给出其一般形式之前,我们先来介绍一下什么是半正定矩阵。
半正定矩阵(Positive Semidefinite Matrix):给定实对称矩阵A∈Rn×n,若对于任意n维非零实向量x,xTAx≥0恒成立,则称矩阵A为半正定矩阵。
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_34.jpg?sign=1739261726-KFXIqbB3esqtNb2qNE9XT1YRpSuBsXTe-0-963dbe5616f1e549eed945de9b679206)
为方便叙述,定义以下符号:
·Sn:所有n维对称矩阵的集合。
·:所有n维半正定(Positive Semidefinite,PSD)矩阵的集合。
根据文献[36][3],半定规划的标准形式如下:
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_36.jpg?sign=1739261726-bcj4yaMtvTM7r0ROYyreYV6meXdBUEKe-0-dc2cc47689d571c041d8c19822b504c4)
其中,C∈Rn×n;X∈Sn,是半正定决策变量矩阵;Ai∈Rn×n,bi∈R;符号“·”表示矩阵的内积,即,符号
表示半正定,约束
一般被称为半正定锥约束。
下面给出一个半定规划的简单例子。考虑一个最小化问题,令n=3,m=3,且给定下列参数:
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_40.jpg?sign=1739261726-EZXjdfqijSniGLKbmY58RQ9FoXfR6wE8-0-2d06a4d2d480f968e4f944de82d3eb21)
以及一个3×3的决策变量矩阵:
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_41.jpg?sign=1739261726-itHKvI3FX0VVzRjxT94ScjKKxwNkMhJf-0-ae293f22952db092fb0b861ea79d5e7b)
则上述数据就可以构建一个SDP的数值案例。注意,X为对称矩阵,因此xij=xji,∀i,j∈{1,2,3}。
接下来将其写成展开的形式。
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_42.jpg?sign=1739261726-rtTIA6MWKNcDmtzPa6A2x2rKOcSsRPKF-0-0ab53985fd0a0ed637e4538c06cc5135)
其他部分的展开也类似。最终,上述案例可以写成如下形式:
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_43.jpg?sign=1739261726-h6hCzZpu3WzjTULvIcmVOCR1X7FZSnwJ-0-1af11de58e1d167d6945be50b3313163)