![基于变分法的细胞演化建模](https://wfqqreader-1252317822.image.myqcloud.com/cover/598/44569598/b_44569598.jpg)
上QQ阅读APP看书,第一时间看更新
2.3.1 直角坐标显式表达举例
以较为一般的泛函为例,其定义在一元函数所在的空间上.函数y=y∗(x)是所要寻求的“极小点”,它是泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P33_21408.jpg?sign=1739568902-PWsHg3nLYjNpZhYeU7nBGgGOwE47xIWH-0-5db730f7bc9e36e5a6aa0985629d0edc)
的“极小点”.其中的函数F关于变量有足够的可微性,如连续可微.泛函定义在如下连续可导函数集合上:
DF={y∈C1[a, b],y(a)=A, y(b)=B}
对于任意的函数y(x),泛函值Ly≥Ly∗.这里引入摄动函数
h(x):=y(x)-y∗(x)
满足
h(a)=h(b)=0
在此基础上,看泛函值的变化
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21416.jpg?sign=1739568902-0UsgG61CZwNl3jnse95lksqSpfGHvCWL-0-d7b48ba5cb981cf572e2027b25b153bd)
上面最后一个等号用到了分部积分和摄动函数的齐次边界条件h(a)=h(b)=0.
根据极值点,也就是驻点的必要条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21418.jpg?sign=1739568902-9zLAOHf0lMDKkEN27pBPhk9J80Hag6O8-0-d498ead551b749dec1da85d4cfdf1550)
即
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21420.jpg?sign=1739568902-EJetVUHqU9JMM9mVnHoOPhhWw71rTIcq-0-18216f43ca6e18e1c6973aca6f7833b8)
再利用定理1.5,同时注意摄动函数h(x)的任意性,可以得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21422.jpg?sign=1739568902-KvAYSKdWiNapmsZBwuU1465zA4HqXvpE-0-dfce77a08d35bc7b0dca463354558b7f)
此即“极小点”y=y∗(x)满足的必要条件,通常称为欧拉-拉格朗日(Euler-Lagrange)方程.
将式(2-15)用于前文的最速下降线问题.
例2.1 最速下降线问题的解(即质点下降的曲线)满足
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P34_21423.jpg?sign=1739568902-XOvsE0Z5iGwta86OejTNhiDEK46dp9UX-0-5215ccceb8a9828fa1bdc33cbb21592d)
解 回顾最速下降线所满足的泛函式(2-4)及其边界条件式(2-5),有
(注意,这里不含变量x)
得到欧拉-拉格朗日方程
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21430.jpg?sign=1739568902-wAFlbqArEm3hue5zPxViBnsz2jHsDoux-0-509713453670c706367232d29b6e66b9)
具体讨论求解.两边乘以函数导数y′得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21432.jpg?sign=1739568902-rtfip2u9Ij5rnkBMI0HLbVn6EdNTatQc-0-332ae2e7fd366c7509ea99ab52bc4682)
得到首次积分
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21434.jpg?sign=1739568902-93LZsoMbSYUeQUmDxVQKmsIyGPwpIP2D-0-e073e78f48433a4523ee494f8ff1de7f)
通分之后,令得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21435.jpg?sign=1739568902-2cNPwtSRCznxu2WkW0NKju7a8OZGJ60v-0-d0a7df3842f45aa91258936ab4b38151)
根据微积分知识,可以将导数y′理解成曲线切线的斜率,所以记y′=tanθ,这里的θ就是曲线切线与x轴正向夹角.从式(2-17)得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21437.jpg?sign=1739568902-cAtQb6Cl9jxpPXJ5nwPhFbqiO1ApyXCa-0-d1f5de4c71e5dfd99eb1506132643232)
代入y′=tanθ,就有
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21439.jpg?sign=1739568902-XyPXU9JA9q6Dq8lP3OCSlo7DzUs0kFqo-0-0c5e9a0fc6998ff83bd9e7ff5906dadf)
积分后得出
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21441.jpg?sign=1739568902-dOuQpWVPHrcDgr3E6ANH3Zo1JsHiJttY-0-4a91574d65df834f789cdabbb4ea35bd)
式中,C2为积分常数.引入变量π-t替换2θ,化简式(2-18)和式(2-19),并结合y(0)=0的边界条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P35_21443.jpg?sign=1739568902-MVEEK76R7KcgiOC8Z7YkaN07hgqn9AXv-0-a5089fdec9857f9d923b52b67dece113)
最后可以通过条件y(X)=Y确定式(2-20),这里略去.或者记r=C/2即可得到式(2-16).式(2-16)或者式(2-20)就是最速下降线满足的曲线方程,如图2-1所示.