![无刷双馈感应电机高性能控制技术](https://wfqqreader-1252317822.image.myqcloud.com/cover/38/36862038/b_36862038.jpg)
上QQ阅读APP看书,第一时间看更新
2.5.4 T型稳态模型
鉴于Π型稳态模型和T型稳态模型的缺陷,本节又介绍了一种T型稳态模型,该模型结构与常规异步电机的稳态模型结构类似,这为后续的BDFIG独立发电系统的性能分析提供了一条新的途径。
为了方便T型稳态模型的推导,首先将图2.5所示的 Π型稳态模型用更简洁的方式来表示,如图2.7所示。其中Zσ1、Zσr、Zσ2、Zm1、Zm2分别为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/38_02.jpg?sign=1739552442-KIw6mJv6ORQ1j3a3iOW37wsHRmTBxNUE-0-fd9ca06f1ba4d34cd604a4a8363f10b7)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/38_03.jpg?sign=1739552442-vSoWhwZvVXqfXxCE3CGOV1qPNqEe4UDc-0-b69ba85868475680f6224a37cf0adffc)
图2.6 BDFIG的内核稳态模型
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/38_04.jpg?sign=1739552442-Q5IGGcS6lgQRA0gYezUdRduZKWi9buLY-0-b8b3cdf27d3de9e9d1f58f8bbef942b8)
图2.7 BDFIG的 Π 型稳态模型的简化表达
图2.7所示的Π型稳态模型实际上是一个无源线性二端口网络,根据参考文献[8],可将BDFM的Π型稳态模型的外部特性用下述方程来描述
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/38_05.jpg?sign=1739552442-91oQtnG8m1JCupWlEycsnqhhWZn7wqPe-0-fcc466480c766665483cfe4c2c82bb5d)
式中,Z11、Z12、Z21和Z22称为二端口网络的开路阻抗参数,其计算方法为[7]
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/39_01.jpg?sign=1739552442-dKky68SjF45zw8hriGeAZRnccf4mBIKK-0-0e21063163267169b1b87b30479d73a0)
任何给定的无源线性二端口网络均可等效变换为如图2.8所示的由3个阻抗组成的T型稳态模型,接下来确定该模型中各个阻抗的参数。
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/39_02.jpg?sign=1739552442-fVLPo2bdQyURYKIyvciwm6qIfVE4EJxB-0-fbe3fe32b382b0ca1b2f8097e45fa372)
图2.8 BDFIG的T型稳态模型
要确定图2.8所示的T型稳态模型中Z1、Z2和Zm的值,可先写出如下所示的回路电流方程
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/39_03.jpg?sign=1739552442-8nkhTk7xlmHBlaDSqlV6JySYI15oqWD3-0-5dcecc5dc61bab806390eb36113411f2)
比较式(2-84)与式(2-85)可知,Z12=Z21,于是可以将式(2-82)改写为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/39_04.jpg?sign=1739552442-0vz5B08YyCUYlOgAPyFu0INyFnpvhXby-0-0209ffaf658484e05e8245a278a8d612)
再比较式(2-87)与式(2-88)可得
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/39_05.jpg?sign=1739552442-AwHrlgkuEcZ45fQgBstrVJATjsB3s3GO-0-21902123b0b0d07d35b043bf314969f5)
将式(2-81)与式(2-83)~(2-86)代入式(2-89),可得图2.8中的阻抗Z1、Z2和Zm的表达式分别为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/39_06.jpg?sign=1739552442-6a8kN3lIdXXuA4ZngFvHeKXA8dnm2jC5-0-a56db3d9939dffb084959142a4510689)
为了保证BDFIG的稳定运行,转差s1的值应远大于0[8]。于是,在忽略转子电阻的情况下,Z1、Z2和Zm中的
项也可以被忽略。此时,Z1、Z2和Zm的表达式可以分别简化为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/39_09.jpg?sign=1739552442-nVjRYMB2KIL3Cx2mWJqTsUxThvnr0F8W-0-6157e75bb4f5c15a3fd567915baf8219)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/40_01.jpg?sign=1739552442-ypNsj7P3ITrURNCDOBKocAdwLAsh3OO3-0-e66e45e7b3b07936586b6350eac6208b)
式中,。
根据式(2-87),将PW的相电压和相电流作为输入变量,CW的相电压和相电流作为输出变量,则图2.8中的T型稳态模型可用式(2-96)所示的矩阵方程来描述:
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/40_03.jpg?sign=1739552442-yuzfDaZydXl6EX9dTn9Jtxtkr9BMHoBS-0-e149ee711b1e4c8bc55cc1fe5fd17cff)