![无刷双馈感应电机高性能控制技术](https://wfqqreader-1252317822.image.myqcloud.com/cover/38/36862038/b_36862038.jpg)
上QQ阅读APP看书,第一时间看更新
2.4.2 任意速dq坐标系下的动态模型[5]
假设dq旋转坐标系的角速度为ω,如图2.2所示,θ1为PW的A相轴线与d轴的夹角,θ2为CW的A相轴线与d轴的夹角,θr为转子A相轴线与d轴的夹角,θ0为PW的A相轴线与CW的A相轴线之间的初始相位差,由图2.2可知
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_02.jpg?sign=1739358008-pBzV35ztHZxVGEvVts7AJZ3EniJXJiD3-0-49c03b7a0568d9ced5d7e7b3170a0bd7)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_03.jpg?sign=1739358008-hzLror41RZq4e4292Y91DkI6pJFZO5cP-0-721e40ca0f72d372aa891910c6f11c3d)
图2.2 BDFIG的任意速dq旋转坐标系
从PW三相静止ABC坐标系转换到两相旋转dq坐标系的变换矩阵为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_04.jpg?sign=1739358008-39i6ysNx5p2516ZtssJmd8PVn9vlhAcV-0-c0d4b2fb57bb80db7800e9b7a25cec21)
从CW三相静止ABC坐标系转换到两相旋转dq坐标系的变换矩阵为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_05.jpg?sign=1739358008-tAGPvrfJG2AOcVGExFTo4a5zJwzwRzAf-0-25474397db0a9fcdb21c4e1eae7487de)
从转子三相静止ABC坐标系转换到两相旋转dq坐标系的变换矩阵为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_06.jpg?sign=1739358008-2p6RbgYnzveu6kTNOftGVacwIE2XpNSC-0-ac3218c1d915ee505b31ee1fb3b6ec71)
将式(2-16)、式(2-17)和式(2-19)代入式(2-20)和式(2-11),得到三相静止ABC坐标系下的PW、CW和转子的电压方程和磁链方程为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_07.jpg?sign=1739358008-cfJhoCTjmeHtlJsMZneZzLrWhyCdzwGj-0-ba40112b7b59c5a878eba6a376c9dc5f)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_01.jpg?sign=1739358008-ES589BcR1o3XhFLckgtnLNfpFexblopn-0-9f823c4f97c56af61cb1b65e0219a23f)
由式(2-36)可得
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_02.jpg?sign=1739358008-1DoO5t8g4AG1IxTvPlJ9VSrAxGi8CTPM-0-158f07edd4d94dadd15e07acc72f3966)
使用坐标变换矩阵T1可将u1、i1和ψ1从三相静止ABC坐标系变换到两相旋转dq坐标系,其变换式为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_03.jpg?sign=1739358008-pO9uIddgyd8CL98le7sHVPGsjdNJ19lp-0-60e12cb0f2cdceefcb8f9eb5d78270d0)
将式(2-33)和式(2-43)代入式(2-42)得
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_04.jpg?sign=1739358008-jAB8Wq4mPkqELzkQGsFpL9HTyFm9BeQ6-0-6a3efc2334265a55b75b0efc4434bdd3)
由式(2-37)可得
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_05.jpg?sign=1739358008-y9Z5i0v5TtqDDiTxFvu2a7dyvsck1m1y-0-f2c7a5df893500bc4eca0fd6437d4d85)
根据T1、M1和M1r的表达式可以计算出
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_06.jpg?sign=1739358008-sE50EWuYCoL8sVtuvb5oB2UtPtzyg0px-0-c1c43ba2aa8b0c58cc7f66e6ee796700)
考虑到Trir=[irdirqir0]T,并将式(2-43)代入式(2-45)得到
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_07.jpg?sign=1739358008-YKG7VeczH1xpEvHGU1ktZlAm50fOLhG9-0-c0c140522adcac85225d9dabb06b5145)
假设电机绕组三相对称,则可以忽略零轴分量,由式(2-44)和式(2-46)分别得到
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_08.jpg?sign=1739358008-evl9bUyZOkpYuiyC86Cy15sEsX3Gi40w-0-f673a282dc22f38548bf077aa8e7d2fa)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_01.jpg?sign=1739358008-gYVTXoPmoe2P1mGZlhL10EP2zrPyeGdo-0-469db5526b93408d25003c374f28e273)
式中,;
。
类似地,使用变换矩阵T1、T2和Tr,由式(2-38)~式(2-41)可以推导出
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_04.jpg?sign=1739358008-Tfc1FfvTsuuGNUdmhNpuyYauefCOrvlN-0-38851bcf5cefb79f1cb136061478ff19)
式中,,
,
,
。
由式(2-21)可得BDFIG的电磁转矩为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_09.jpg?sign=1739358008-MjLDR3FSoU8TPqUT6Be4LQJG2rknrV2A-0-51a3ed24eb308636cba86925a2f72550)
考虑到dθr=ωr(dt),对式(2-53)进行变形得到
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_10.jpg?sign=1739358008-ZtJJuZcXabSvySz5LLIdLAPy8yMQJWzB-0-59e81b860173269a6ee8d71fffcbc277)
根据T1、T2、Tr、M1r和M2r的表达式可以计算出
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_11.jpg?sign=1739358008-yvf0zaAluwUpuOevW2OGWMDBceQtxsH5-0-a7da182c73d70df18a2d7e7a8a1f2770)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/35_01.jpg?sign=1739358008-xoPrFOmu1SzqTK3cZHTRIyVfJF9ZSnl3-0-6fb9d00a4ec1ac2ece3cc934365439c3)
于是式(2-54)可以简化为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/35_02.jpg?sign=1739358008-K9vf6C2z3AxSWEazEkaVqaypMYlJhzvM-0-9b3e1808ef23e14064846b5d2a3571fa)
式(2-47)~式(2-52)以及式(2-55)构成了BDFIG在任意速dq坐标系下的动态模型。