![高等数学(上册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/472/32164472/b_32164472.jpg)
1.6 极限存在准则和两个重要极限
本节我们介绍极限存在的两个准则——夹逼准则和单调有界收敛准则,并由此得到两个重要极限.
定理1.6.1(夹逼准则) 设数列{xn},{yn},{zn}满足以下条件:
(1)从某项起,即∃n0∈N+,当n>n0时,有yn≤xn≤zn;
(2),
则数列{xn}的极限存在,且.
证 由则根据数列极限的定义,对∀ε>0,存在正整数N1,当n>N1时,总有
|yn-A|<ε,
即
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-042-10.jpg?sign=1739941412-MYMBLMkZGfnD5efrKChVAVEZOOw5yLZi-0-4cf2199aff66d713cbba092b0bef9e11)
同理,由则对上述ε,存在正整数N2,当n>N2时,总有
|zn-A|<ε,
即
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-042-11.jpg?sign=1739941412-qtn5cruf0ZaRjUZRa2K2y9wl2oHSfvY8-0-be23c8405b8be4b884d8acbee30c2361)
取N=max{N0,N1,N2},当时,条件(1)和式(1.6.1)、式(1.6.2)同时成立,则
A-ε≤yn≤xn≤zn≤A+ε,
所以数列{xn}的极限存在,且.
夹逼准则对于函数极限也成立,即设在自变量x的同一个极限过程下,f(x),g(x)和h(x)满足以下条件:
(1)g(x)≤f(x)≤h(x);(2)limg(x)=A,lim h(x)=A,则lim f(x)=A.
例1.6.1 求.
解 由于,所以
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-02.jpg?sign=1739941412-qSSSxQi30bSibX1NvptUKdlvuARzSIGl-0-dc526bb9f5c80a75d15a1770242277e9)
而
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-03.jpg?sign=1739941412-Z8KK9N1Fy0PHod5iUupCU38vFdvfGntk-0-4f77f79c85dcaf4bb6ed924572cc9b70)
由夹逼准则知
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-04.jpg?sign=1739941412-KUbnTK50z80Z4AA2o9cMkhbiUg0bMvcC-0-047d99fafe2eb7a0e39a5ed2e3e3e2df)
作为夹逼准则的应用,下面介绍第一重要极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-05.jpg?sign=1739941412-bgoz0xZ8e9HetrAjj4fuFYM6xzS5Fgyk-0-687c9414231d08a5a831f3b7637ba2fb)
证 首先注意到,函数对于一切x≠0都有定义. 作单位圆如图1-6-1,设∠AOB=x(弧度),过A作圆的切线与OB的延长线交于P,过B作OA的垂线交OA于C,从图1-6-1容易看出,△OAB的面积<扇形△OAB的面积<△OAP的面积,而
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-07.jpg?sign=1739941412-8w43rDeWM4zLNIbmjE72NZAy7yKsBrfR-0-ea510b8035e89e7a74326fc132de297e)
故有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-08.jpg?sign=1739941412-MbMiVFzQ1dCNOX8hFxA5whY7k7A2MRAY-0-7d047d3f726afbac1d8800881cc67135)
当时,上式各项同除以
,有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-11.jpg?sign=1739941412-XbBIrRZ73Kqyuvkwl6eu7awUufqN2kC0-0-d9fde30debd10c2622a30216f1fb21a6)
即
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-12.jpg?sign=1739941412-yNZ93xzL7Edp1SQ0Go8QGVnYXEoaYw0k-0-c35480af5fb7bbc96e954af709bd99b6)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-13.jpg?sign=1739941412-TcprDwz5lAfeOIT3ET7tHOD3BprBN2ot-0-ed1f9ce24b217b9eb332165f44a49465)
图1-6-1
当时,由于cos(-x)=cos x,
,式(1.6.3)也成立.
因此,由和夹逼准则,有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-17.jpg?sign=1739941412-uwXSKCYwQqE0aTnmsdsg7U8Obn8N3ZZK-0-88f9ce296725a3a24fcdda370ee7d8b1)
例1.6.2 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-02.jpg?sign=1739941412-LzDnS25NHfpmVDVM2DOqJpcOjWoatXIt-0-8c54beaca04268faa2ebb5dfe7ec47b9)
令t=kx,则当x→0时,t→0,所以
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-03.jpg?sign=1739941412-znfMeotiakGQLdMtCsPafq2cIN7EwJBA-0-ae453a01889808cb657d5704e978e8f8)
例1.6.3 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-05.jpg?sign=1739941412-YjkqJPhlMTSl9yC7V6XlQiW5V1wV738J-0-cacba805c85585731754006a763d56bd)
例1.6.4 计算极限.
解 由于
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-08.jpg?sign=1739941412-RI9Zn7Z4GNnyFEdC9Bwo4SDr37WPAb6r-0-57f5073bd74931914cf030b5dfc413f0)
令,则当x→0时,t→0,所以
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-09.jpg?sign=1739941412-qhHmuqSV7sVFuEDSvFXht6hUSIboyxMb-0-b5c0ebc6b55603783b9f87739148f786)
一般地,设α(x)是自变量x某一变化过程中的无穷小,即lim α(x)=0,且α(x)≠0,则在同一极限过程中,
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-10.jpg?sign=1739941412-X9FhGTddijWh9fvpP7AB4EqOwVPqX63n-0-ac01ed782332920885b201d7ae592165)
例1.6.5 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-12.jpg?sign=1739941412-16QOCbSNICNh9rRLEpTnpcmhF1hfNmTy-0-8847224f7426e89769073abf1d11d1b8)
定理1.6.2(单调有界收敛准则) 单调有界的数列必收敛. 即给定数列{xn},若有
x1≤x2≤…≤xn≤…(单调增加)
或者
x1≥x2≥…≥xn≥…(单调减少),
且对一切n,有|xn|≤M(有界),则数列{xn}必收敛.
由定理1.2.2知:收敛的数列必有界,但有界的数列未必收敛. 现在单调有界收敛准则表明:如果数列不仅收敛,而且是单调的,那么该数列一定收敛.
单调有界收敛准则的几何解释:单调增加数列的点只可能向右一个方向移动,或者无限向右移动,或者无限趋近于某一个定点A,而对有界数列只可能发生后一种情况. 单调减少数列情况类似.
使用单调有界收敛准则时,我们通常考虑下列两种特殊情况.
推论1.6.1 如果数列{xn}单调增加且有上界,则{xn}必收敛.
推论1.6.2 如果数列{xn}单调减少且有下界,则{xn}必收敛.
例1.6.6 设数列{xn}满足存在,并求其极限.
解 由题意知0≤xn≤1,n=1,2,…,因此数列{xn}为有界数列. 又
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-02.jpg?sign=1739941412-Dc3xdhlDGU1K2uJRZFUMWmf7HaxvBVmo-0-53109f13b88d059d950818dd75e930ec)
即
xn+1≤xn,n=1,2,…,
所以数列{xn}为单调减少,由推论1.6.2知存在.
设,在等式
两边同时令n→∞,并注意到
从而有
A=A2,
解得A=0,A=1. 又因为0≤A≤x1<1所以A=1舍去,故A=0.
下面介绍第二重要极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-07.jpg?sign=1739941412-HZUojLPQIlZBJJvDw0UkfOjMWoIFZS0C-0-013c6ee2702e0aec407d5b10078b7a95)
先讨论数列极限的情形:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-08.jpg?sign=1739941412-OBQ0NN9LqYLqvgXNmzBalRvXcHJRBHeh-0-4f7531d1bc1974bc4825ed52db3dcc64)
我们只需要证明数列是单调增加且有上界的即可.
结论1.1.3已经给出了下列不等式:对任意n个正数a1,a2,…,an时,有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-10.jpg?sign=1739941412-nJGfBr3w98eynWFcwEzXk3S3b4SNkBuC-0-519ec7ccecb264cb9deb82c644cdb30e)
且等式成立当且仅当a1,a2,…,an全部相等. 上式即为
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-11.jpg?sign=1739941412-5btR0SoaXWCbQcSesuEtUBdxMI5bITDr-0-f8ba169a58c000002b9b315e0656b20d)
(单调性)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-12.jpg?sign=1739941412-lb4xiUjfa8qHEo8LC6pLyHBjXuk7PFpQ-0-b4eae4da956d9de040f08e66f1c5e4e6)
由式(1.6.4)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-13.jpg?sign=1739941412-2stdew4NewOgXn2FbLRZE9qyMT6gGh3b-0-b148b33163513f79d64527a19e9a672c)
所以数列是单调增加的.
(有界性)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-01.jpg?sign=1739941412-0Gz3ssuivp5xTFINWvGAJni4o1eZ1f6v-0-2f84cf41ddb088e14c0652aae0b149bd)
即得
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-02.jpg?sign=1739941412-ltJwxRDJISGK3u84bF4PdfRhRdz8B2sp-0-4c232c05697518ba2acbb49b24f437a9)
由单调性知
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-03.jpg?sign=1739941412-US0nMnRwaVe13c5buYJCJGTtbSke1rkN-0-07ef3ae28dcea1e4e785773d91932933)
所以对任意的n均有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-04.jpg?sign=1739941412-7GKWMc0uhsQbSbncJB8HCTOg6IZV8vfU-0-527ae49d4a8e018447ced163902e2a40)
即数列有上界.
由推论1.6.1,数列收敛,即数列极限存在,用字母e来表示. 可以证明e是一个无理数,其值为
e=2.718281828459045….
即
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-07.jpg?sign=1739941412-GfUxxumU8DcOKiWznB4oKx7HggaqKILN-0-22943c88321f9c5342e36639d96a6c4e)
进一步可以通过夹逼准则及变量代换证明
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-08.jpg?sign=1739941412-bbIOtg5tIYSf1VdCFKXRAPL5jw85sV83-0-e7ba3c02386b30007803a4ca49e2c328)
指数函数y=ex以及自然对数y=ln x中的底e即为这个常数.
若在,则当x→∞时t→0,故
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-10.jpg?sign=1739941412-CJ0GmtwpKkCb9zcCaLumvEUmptkmf83J-0-41714830943ce771bb2c5e1b50fdb73e)
所以,第二重要极限也可以变形为
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-11.jpg?sign=1739941412-dTAD0KxLiY2LAa1B152lkCSYjP3DVDfz-0-f508ccaf710a225265bb77bde3c0c8c6)
例1.6.7 计算极限.
解 令t=3x,则当x→0时,t→0,所以
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-01.jpg?sign=1739941412-1yEdQzY2NcNGYtR9xKz1eTmb34yp8POD-0-66a0b05f6bb71dcb9d1fa04226ced7fe)
例1.6.8 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-03.jpg?sign=1739941412-BnnAVjJGcLCsEK4eu6Cbl5jhkXtC4xG5-0-bbac872a2334ad35715f80c74d5efb73)
例1.6.9 计算极限.
解 令,当x→∞时,t→∞,则
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-06.jpg?sign=1739941412-qVn48KnpwWcMUmDsqYt6l5CxyQLJ0yD6-0-d3973d0b2dce310de0105ea289143284)
一般地,设α(x)是自变量x某一变化过程中的无穷小,即lim α(x)=0,则
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-07.jpg?sign=1739941412-XbdaADbjzPqdEhbfTxDjZetGQIuRVSxl-0-756673c99c817de07da68813cbab776a)
注意第二类重要极限的特点:函数是幂指函数,底数为两项之和,其中第一项为1,第二项的极限为0,指数与第二项互为倒数. 这样的极限值都是e.
例1.6.9的解题过程也可以简写成
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-08.jpg?sign=1739941412-EwEoXSQteXkZRTegzBrrTTyKyjuRvxot-0-41726c2efd985a3c934089b73cff4407)
例1.6.10 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-10.jpg?sign=1739941412-gizIaay5BJAa64Fz4UC7i1bJftqHQ8sc-0-abe23094f320423f2f264af002eb06e9)
习题1-6
1. 利用极限存在的准则证明:
(1);
(2)数列的极限存在.
2. 求下列极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-13.jpg?sign=1739941412-QevsmkQM4Xr7VzlgffI6G1socOJh7as7-0-58c4b8655db84701d386398d016fc6f2)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-048-01.jpg?sign=1739941412-DN57EEu8RBbmf17qauxHW0GSkuTLywA8-0-a7b7c83bbc95abaa315eb54d09b25e62)
3. 求下列极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-048-02.jpg?sign=1739941412-lssOYfVCJKxMPWek8wDBcVJhvsdQqyhg-0-d8865b7c0db5f3c5d7e2c782493fcc76)
4. 求下列极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-048-03.jpg?sign=1739941412-cEc4mPYOsHkNuf4aJufr0qTPyGX2Ayid-0-ab13ebd4ecef7ada6540bac9f1483280)