![孙训方《材料力学》(第5版)(上册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】](https://wfqqreader-1252317822.image.myqcloud.com/cover/754/27032754/b_27032754.jpg)
第4章 弯曲应力
一、选择题
1.如图4-1所示,轴AB作匀速转动,等截面斜杆固定于轴AB上,沿斜杆轴线弯矩图可能为( )。[中国矿业大学2009研]
A.一次直线
B.二次曲线
C.三次曲线
D.四次曲线
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image105.jpg?sign=1738775911-xPEpTHwOmzGCFeD9kWW9VXMwmrCJpUHG-0-21c54af39bd69cb31af75ab97bd51054)
图4-1
【答案】C
【解析】设斜杆以角速度ω匀速转动,斜杆的长度为l,横截面面积为A,容重为γ,于是可得距离固定端x的截面处离心力的集度为:
根据弯矩、剪力与荷载集度之间的微分关系:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image107.png?sign=1738775911-OmyJ12vMmSDw1avMGzEKxT5KRj5ae5zA-0-6cf5cefc807ac2bf0e0a1b2fc602deba)
可知弯矩图应该为关于x的三次曲线。
2.图4-2所示外伸梁横截面为矩形,且宽为高的三倍(b=3h),此时许用荷载[q]=q0。若将该梁截面立放(使高为宽的三倍),则许用荷载变为( )。[北京航空航天大学2005研]
A.[q]=3q0
B.[q]=9q0
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image109.jpg?sign=1738775911-EAPilk83GcHgRxA1juxOOovF1wQiqbA7-0-12e319a02c57e982f2a6f7400c0e6316)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image110.jpg?sign=1738775911-tTumxnIDP7ff9TCmLhcDaoDAkmIwuxWg-0-df946bf23d176a4928a339b8734f4e0d)
图4-2
【答案】A
【解析】假设在x截面处的弯矩最大,根据正应力计算公式可得:
平放时的最大正应力:,许可弯矩:
立放时的最大正应力:,许可弯矩:
又,可知[q]=3q0
3.图4-3所示,矩形截面简支梁承受集中力偶Me,当集中力偶Me在CB段任意移动,AC段各个横截面上的( )。[西北工业大学2005研]
A.最大正应力变化,最大切应力不变
B.最大正应力和最大切应力都变化
C.最大正应力不变,最大切应力变化
D.最大正应力和最大切应力都不变
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image116.jpg?sign=1738775911-hvNvmAyCeSg3b7YOudJG3JEHJLmy7Od0-0-0ecbdeabbd72068980eb1d421d029a87)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image117.jpg?sign=1738775911-tvm8hE6B0cfeE3guoZiG3K6s0hoynFiF-0-20a235dcfb06467e210bfb71dd467e2d)
图4-3 图4-4
【答案】A
【解析】设AB梁长为l,Me距B支座为x,作弯矩图如图4-4(a)所示。
在Me作用下,弯矩突变值为,整个梁上剪力大小相同,如图4-4(b)所示,故最大切应力不变(τmax=
。当x发生变化时,最大弯矩值也发生变化,由
知,最大正应力也将发生变化。
二、计算题
1.一⊥形截面的外伸梁如图4-5所示。已知:l=600mm,a=110mm,b=30mm,c=80mm,F1=24kN,F2=9kN,材料的许用拉应力[σt]=30MPa,许用压应力[σc]=90Mpa。
(1)若C为⊥形截面形心,试求y1与y2的值;
(2)不计弯曲切应力的影响,试校核该梁的强度。[北京科技大学2012研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image121.png?sign=1738775911-rE4FhPYC27vdVy3KBjSbBGf8vt8A41v4-0-c492a0ddbb6273307918dd861d6a20aa)
图4-5
答:(1)建立如图4-6所示坐标系。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image122.jpg?sign=1738775911-pCHvaHZ6epEqaiWYp1UKPkY71wU7DM26-0-59e40c40cb8c83acb9084a91d030232a)
图4-6
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image123.png?sign=1738775911-iiuKjVbTSBmdke8SSvDlXrUSbIFTbv8P-0-692c622e3d390d86b2bc5055ec14c4ed)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image124.png?sign=1738775911-QYJceSfbb3g0RAVMfCZTgM0slIFGLt05-0-1f291a921f43a3497cef0899a64c84b7)
所以与
值分别为:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image127.png?sign=1738775911-IVctt3TeC8I69yaNgDsxGlwDXlJQPQal-0-53ea6997e92bee4c05114acb42fa4ee1)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image129.png?sign=1738775911-fl6Nd37ELkQBUmao54WpBJWp1Lp4xjJV-0-6aae061836b8073c3cf412cd185a05ca)
(2)作梁ABD弯矩图,如图4-7所示
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image130.png?sign=1738775911-a95SnIYKJj2clZK32IaQnVjBrfeRFsUT-0-5cdb0b01a1077ff9208088367900eb48)
图4-7(单位KN.m)
在截面E处,有
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image131.png?sign=1738775911-1xgkoeQFGx3htJUxW5uUDrmwUTcOCJhw-0-e1694d3c829576f117a2ad79f15049df)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image132.png?sign=1738775911-rTVYFW9uULRLnG3pFtpAw76dIZEwAT2b-0-8550594fbb67c0e6b62422e01fcda1b0)
在截面B处,有
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image133.png?sign=1738775911-kOyqQElmt2zib4hvwTjdAa2RmmM0JS3f-0-023aacbc1dc0f1ecb96111097a74e8b4)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image134.png?sign=1738775911-Few01LGblo2O7KE688KNhec20uWg4Z7x-0-a86844aa354845ab1b1243826eb239bf)
综上述,梁的强度满足要求。
2.试绘制图4-8所示梁的剪力图和弯矩图。[武汉理工大学2010研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image135.jpg?sign=1738775911-up295KEPnAYQYfW5p1nKz1NIQxdxRrkt-0-172122b1ce7364403bbc96b2e3032848)
图4-8
解:(1)根据平衡方程求得之支反力:
(2)剪力图和弯矩图分别如图4-9(a)(b)所示。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image137.png?sign=1738775911-Ak9ke2w5GRaPv5cEvPMaWFn9y4QXFRUN-0-63ece29d0ff8916aec9e4598e62b18d5)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image138.jpg?sign=1738775911-lg9Z9ERHsmBfbc0evkOv4HvNLC5Y4J1o-0-0491d8d2458392083ab4774db5d27894)
(a) (b)
图4-9
3.已知简支梁弯矩方程和弯矩图如图4-10所示。其中:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image139.jpg?sign=1738775911-IA2Dnd204tycopAi9WPcs3XV6qYur5AK-0-49d2c328f6ba7e04e196be32e5df8456)
试:(1)画出梁上的载荷;(2)作梁的剪力图。[西安交通大学2005研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image140.jpg?sign=1738775911-b3eB6WKmZb3GJI4ZrR1FXU1s41fX8g0B-0-3d654a8f01511f169539a82965138327)
图4-10
解:根据弯矩、剪力和载荷集度的微分关系,分别对M(x)求一阶、二阶导数,可得到梁的剪力方程和荷载集度:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image141.jpg?sign=1738775911-svMMcOSPXAAxApsu6MlxEHlTwKWbvZ88-0-fcb60b126e5a3d0a17be9a316cfb7ba1)
(1)作载荷图
根据弯矩图可知,在x=0截面上有一正弯矩
根据剪力方程可知:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image144.png?sign=1738775911-BOkFvwcwGIxibUaiSyzJSFh6hDJwBBpA-0-178747c6a6a10f38570c1d74437e352b)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image145.jpg?sign=1738775911-ehsHWlYaEbrzWlJA0rHKuq19vVmR2aZh-0-24c53cf0743e4390c43f215eaefc750a)
在截面左侧,剪力等于
,右侧截面剪力等于
,由此可判断在
截面上有向下集中力
的作用。
由弯矩方程的二阶导数可知:
综上,绘制荷载图,如图4-11(a)所示。
(2)作梁的剪力图
根据以上所得梁荷载图绘制剪力Fs图,如图4-11(b)所示。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image151.jpg?sign=1738775911-4Zz9f78lCDBU7zMs4MPvQttG7f2ZoeoB-0-0161f1160ffa9bdfeaa6555e7c98912c)
(a) (b)
图4-11
4.T形截面梁荷载及尺寸情况如图4-12所示,材料许用拉应力[σt]=30 MPa,许用压应力[σc]=80 MPa。
(1)校核梁的正应力强度条件;(2)计算梁横截面上的最大切应力。[同济大学2001研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image152.jpg?sign=1738775911-UNwCz0Rwlwj4y79z7jGsIaxkN3kCGT95-0-ae4c451e96719acde900bbd2786f3f79)
图4-12
解:(1)求支座反力作内力图
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image153.jpg?sign=1738775911-hUjwRPj5suJx5X9L8IAiFHohprQCikXD-0-bf314e81f4bede70546b2b79fa119972)
梁的剪力图和弯矩图如图4-13所示。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image156.jpg?sign=1738775911-Qb4x5tOmBdp66gD58QdTW929LYE2Sap4-0-55ba3a2afe754e42cb11e75468b1a98e)
图4-13
(2)确定形心
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image157.jpg?sign=1738775911-4rrNKCYbTgjyrTecx1ZB1Yni7RSfxCRe-0-4005f8668006003243dc59df33cc4940)
图形对zc轴的惯性矩为:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image158.jpg?sign=1738775911-TMf3vzbzVTpQro8GXQKybXzmdGjGJ918-0-b9cac475c54b1bef461853867d171919)
(3)梁上正应力强度校核
在B截面上
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image159.jpg?sign=1738775911-vMY99GuuV5mGju7yVyr9NEDDx4gGNVtw-0-520a52bfb27513c5f54cdd91bc327c70)
在D截面上
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image160.jpg?sign=1738775911-b5IQaXWNDwxWdvSjKfeGIcmiKIOAdsgs-0-bb0627c40a7405a220a7d8ebd6f0b5eb)
梁的正应力强度条件满足。
(4)梁横截面上最大切应力
在B左侧截面上有最大剪力:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image161.jpg?sign=1738775911-9DT4M6bmnYCZbapkE6TEWVfeGjeVeYOl-0-336fda0f33cc5ecb5a93d6e46b87e022)
故
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image162.jpg?sign=1738775911-I3rOhXWd9oN5d0opz1TjjJRtkKvq5Qe2-0-bf51e9cfe8de20a5e96f9e2dec498be3)
4.T形等截面悬臂梁受力及尺寸(单位:mm)如图4-14所示。已知Z为梁截面的中性轴,P=16KN,a=2m,材料的许用拉应力[σt]=80MPa,许用压应力[σc]=200MPa。弹性模量E=200GPa。试:
(1)校核梁的正应力强度;
(2)计算梁横截面上的最大切应力。[武汉大学2007研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image164.jpg?sign=1738775911-Cmy8lJ36oHqVP2RPJNf47nKR6iQxB7Yv-0-f5c1fb16c65e1f47eb1681806f9c8855)
图4-14
解:(1)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image166.png?sign=1738775911-HQtbl0YBzt9C1g7oKxFW9ptq7fIPpSx4-0-e85ee00e5558cfa720676cbdec85b06b)
(2)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image167.png?sign=1738775911-0nd6Heto5JEvprRu473zoQM4uVdf7c3M-0-34c0e0779299bb24c928cf9426b9b623)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image168.png?sign=1738775911-5v5E4rPUvCyhNCg6VucDli172xseWSA1-0-c60992b75cbfa4be629b3c73a53847e0)