
上QQ阅读APP看书,第一时间看更新
3.1 引言
个性化推荐是从海量数据中挖掘出有用信息的一种技术,协同过滤是其应用最广泛、最成功的推荐算法之一,通过收集和分析用户的信息数据来学习用户的兴趣偏好和行为模式,从而为用户推荐所需要的信息或商品。
传统的协同过滤推荐算法忽略了随着时间变化而用户的兴趣也在不断发生变化的问题,即存在用户兴趣漂移现象。用户的兴趣偏好不但范围广泛,而且实时变化。例如,一个孩子在几岁时可能对动画片感兴趣,青春期可能对浪漫爱情片感兴趣,随后有可能对文艺片感兴趣,再过几年可能对剧情片感兴趣,等等。随着时间推移,用户的关注点在不断变化,如何捕获这一动态的时间效应是个难题。
通常将时间窗作为判断用户兴趣变化的一种表征方式,采用加权处理的方法,来提高推荐质量。文献[1]通过对心理遗忘曲线拟合出用户兴趣权重函数,提出基于时间窗的改进协同过滤推荐算法,从而追踪和学习用户的兴趣偏好;文献[2]~[4]提出基于评价时间数据权重的用户兴趣度量函数,使得用户最可能感兴趣近期访问过的资源。这些方法在相似度度量过程中加入了时间因子,从一定程度上解决了用户兴趣漂移问题,但是忽略了不同对象的类别属性等特征信息,这在一定程度上也会影响最终的推荐质量。
针对这一问题,本章提出了一种基于用户兴趣和项目属性的协同过滤推荐算法,在传统的用户—项目评分矩阵基础上综合考虑用户偏好、评分时间以及项目属性特征等因素,先在计算相似度过程中加入时间逻辑性因素,再与项目属性相似度进行融合,明确用户对项目中各个属性的偏好程度,更能体现出用户的行为需求。