![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
1.4.1 第一重要极限
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034001.jpg?sign=1738879186-717zR5eHar2WmydVuShAwf3kyWFhfYxv-0-c62ec85b65e4665aa2a620e6c008f1c4)
为了更好地理解第一重要极限,先给出如下夹逼定理.
定理(夹逼定理) 如果,
,且
G(x)≤f(x)≤F(x),
则
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034004.jpg?sign=1738879186-RzXLqYY4ouwHh6sRPdB1ceyQQPQLiO3M-0-b6b96b64b86a2033c3cc651873a1e18c)
从直观上可以看出,该定理是很明显的.当x→x0时,f(x)的左、右函数G(x)和F(x)的极限都同时无限趋近于常数A,则会“逼迫”中间函数f(x)也无限趋近于常数A.
下面根据该定理证明第一重要极限.
作单位圆,如图1-22所示,取圆心角∠AOB=x,令x→0+,不妨假设2.由图可看出,S△AOB<S扇AOB<S△AOD,即
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034006.jpg?sign=1738879186-jblZRppKdlZgr7SFmE5CyrHRlsqVZucl-0-d33408870c913926441770e79e5976e7)
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034007.jpg?sign=1738879186-4qIbgJhxcU3dAckd0V1O62mTK4rr6Pfq-0-a21b05351ce50eab5ebcad3da2c2a366)
图 1-22
从而有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034008.jpg?sign=1738879186-IKdmRXPBoV3SFyYYLJuDhlLRNRTiyBxe-0-add775906b80edef93663bed6933a20c)
取倒数
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034009.jpg?sign=1738879186-b2bRKsKrqQuQCIKFaxuyAqCwDF1gwP2r-0-c2d3b1c5824016ed45047149a00502ae)
因为,根据本节定理,证得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034011.jpg?sign=1738879186-LdiBYdpnaVrwHKnZk4ljAxW3euuuhYBx-0-9677269c1b6d0ce41949775b0c7e752c)
又因为cosx和x均是偶函数,所以当x→0-,即对于
,结论仍成立,
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034014.jpg?sign=1738879186-kl7sa35FOK7Mxn0kocgkNQnRIGzxcIAw-0-c1a113811fe8eab85af9eed125859730)
由§1.2节定理2,有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034015.jpg?sign=1738879186-bjoSVfUsFyX3lHoIx4dfi8cEj7B3OgKl-0-ab76c4cdacb03c3cb60c7f1b6a2737ab)
第一重要极限公式(1-1)在极限运算中有重要的作用,要较好地掌握它,必须认清它的特点.
发现:(1)极限是 型,且含有正弦函数;
(2)极限为类型 或x→∞时,□→0,其本质为:
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035003.jpg?sign=1738879186-om4SGShXrVtwtHxxir9GhLByA0EfZ7Zw-0-4e82b4e2e9bdbe7900d98574a151577e)
例1 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035005.jpg?sign=1738879186-QAaWdY6W6EH5YQzWcexunusEDYLqXI4g-0-1db20ec31dd86a043973039447493426)
例2 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035007.jpg?sign=1738879186-hHSOwwKiwnoTtEsCUKZw3Ss1HBT0uslx-0-3398883ee3c19c420c807460a1b06972)
例3 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035009.jpg?sign=1738879186-uAVxh0iYW9mLThfeH972a0dcYP47ev68-0-8e78cd641c6c54ac83b401ff3db0b330)
例4 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035011.jpg?sign=1738879186-QWHEBVk1PwHk7IdX5a42BCEPkeCn0AVg-0-8f5274ae55bc364b57ca1561a847a977)
例5 证明
证明 令arcsinx=t,则x=sint,当x→0时,t→0,则
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035013.jpg?sign=1738879186-aeoZe5H3ZGfzr2vTdciBSuEw2vVA3zw4-0-cae866946d5827e8944d17c9ab65e269)
发现:(1) ;(2)
;(3)
;(4)sinkx≠ksinx.