![电子商务理论与实践:SCM ERP CRM DW USE B2C B2B B2M M2M和C2C举例](https://wfqqreader-1252317822.image.myqcloud.com/cover/578/24273578/b_24273578.jpg)
2.4 投入产出模型的三级分解协调预测算法
2.4.1 问题的提出
根据上节,投入产出模型的优化问题可以表述为
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0033_0001.jpg?sign=1739338755-3PXRHUxy9mR1DUMpA0Tul4nziP0B97b1-0-04a8a1e78bf0d1aa56d0ec21326a6ce7)
2.4.2 问题的求解
定义对偶函数φ(λ)
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0033_0002.jpg?sign=1739338755-CGEbTAIK4sldE2I340dTfo7Ay7kxbQnt-0-f8e1795629f061db7fb06920ca36bd90)
于是,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0033_0003.jpg?sign=1739338755-wtKHqZlAJmlH2kcOtzEu0OxlwXAdzqr0-0-cf7a648bceb77f36cbc3583bb27cf3df)
由于
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0033_0004.jpg?sign=1739338755-efs4HX7PMrFV0THVfeRMzaQuTGomKxnf-0-642584e40de2d54522eb0cffdab6fc8d)
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0001.jpg?sign=1739338755-8X3t40LD8nDRTbJy4USEfizdqrb59Sx0-0-8375151c6ed2a4307ed5f34c7741965e)
及同理得出的
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0002.jpg?sign=1739338755-MgJkrP4ETX9AbN1OipEqGMlsUSWjhQYv-0-0b646a9655893dfe88abaf40058932c4)
我们可以得到,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0003.jpg?sign=1739338755-flX3tYE79RZIM1LiZmby906bM6RYl6dZ-0-a8eb6b64745ccb229cd6a56ab4fedb3b)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0004.jpg?sign=1739338755-y7m8ugdvSpHYZgRB5H0GfqGnnco4RS5Z-0-3bc58f9badd5556067f0198a0e0c6494)
在第三级给定λi(k)=λ*i(k)的情况下,第二级求Li的最优。而第三级本身则是用关联变量的误差作梯度,用梯度法或共轭梯度法寻优,有
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0005.jpg?sign=1739338755-X75nTvZSAuT8lyk2o7LCfG3uP1Xutz2F-0-7c8539b37b4db8bd47b4b932198cd7e3)
若把N年以后的产量X(k)(N+1≤k≤N+T)当作X(N)的线性函数,如X(k)=(1+b)k-NX(N),其中b代表增长率,即假设规划目标年以后若干年的产值都按照固定的百分比增加,则第二级只要给出在λ*i(k)下使第i个子系统(i=1, …, C)已达到最优时的Xi(k), Zi(k), k=0,1, …, N,即可反馈回第三级。
对第二级,把子系统的拉格朗日函数按时间下标分解成子子拉格朗日函数,这样就把一个泛函优化的问题变为参数优化问题,很容易在第一级求得显式解(梁循,2006)。具体做法是:
定义对偶函数
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0001.jpg?sign=1739338755-AQVfUGfxehwapJV5hKjN0NzwIGaNKvIi-0-65001a96066976870bf400ada22d60c4)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0002.jpg?sign=1739338755-tpG24FWwRjdMlCRc02xKEZDi0kdOC0a1-0-39339e57974472819663338346a597f2)
设λi(σ)=0, μi(σ)=0, Hτi(σ), Wτ, ij(σ)=0。当σ>N或σ<0,我们有
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0003.jpg?sign=1739338755-dC0CD7u18nGeXtp3Z8RHMghQP7dKP4Mz-0-dc4a1a023af809c133855d224fb38f09)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0004.jpg?sign=1739338755-3RYdBbGAX1B4vt3g0vwUaY7psd5qo5V1-0-76898beb24c513650b90f085efde1b78)
于是,每个子问题Li又可分解成N+1个独立的子子问题,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0005.jpg?sign=1739338755-7yM2dc4JdASEEAIeoyKENc271el69QiY-0-adb4eae9c5f596bc5a6850784a0f1de3)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0006.jpg?sign=1739338755-R09GlhLLYhcJmb3typ8gjPHIw6FRK4xU-0-599869efe7cf40aa94f26bd77b4caae1)
在第二级给定μi(k)=μ*j(k), k=0,1, …, N的情况下,对第i个子系统,第一级求Li(k), Li(N)最优,而在第二级用梯度法或共轭梯度法寻优,有
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0036_0001.jpg?sign=1739338755-uFQleJOHrvaD71nsn26ynQZhY3Qtps7V-0-d520a7bf510b3e769d8493221ff0aa77)
在第二级第i个子系统的子子系统中求出Xi(k), Yi(k), Zi(k)(k=0,1, …, N)后,即可反馈回第二级。
由Li(k), Li(N),并注意X(k)=(1+b)k-NX(N),(N+1≤k≤N+T)可得,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0036_0002.jpg?sign=1739338755-OZzjVIcwH8xJQv9TskOA6rxeSQlNAZqf-0-d9f756141f6aa725330a94d9d7fbc701)
可得Zi(k), Ui(k), Xi(k), k=0,1, …, N。于是,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0036_0003.jpg?sign=1739338755-rcOhdj2yfLFVHATBUPjJVCOiAXS4I8Sf-0-1482e111a7a8c8932751658fd3ae768f)
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0001.jpg?sign=1739338755-i6xcHkqfRpjOUxe3TenCx1Ytmagk5FS4-0-c20c8226fea5e801c53656103216f818)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0002.jpg?sign=1739338755-MfFCfQkD91paRHqfMbaJGvAjBks63EqS-0-4b94992a9207cf7638bbcf590e1057b9)
在第三、二级中,新的协调变量由下式确定:
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0003.jpg?sign=1739338755-35EJpjum7fG3f254u3jSl9FabNA2jlCg-0-3190473d8c4ecd6dab53029d940ff94b)
其中,l=0,1, …为迭代次数,αli(k), α′li(k)为寻优步长。
若用梯度法,则
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0004.jpg?sign=1739338755-jPOHfzX7l4lX0mSMPahicQmfeylVB9Qi-0-27618ff893c2eed9f9e67127ba91a134)
若用共轭梯度法,则
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0005.jpg?sign=1739338755-KB1apAIX0OrjYr3ZLCZ9k4cAPKSStwr0-0-67748845652267a894381c7aa7c46ca2)
上述三级结构如图2-3所示(梁循,1990)。
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0038_0001.jpg?sign=1739338755-4PMxdbTgdwsJuKBWpiK6Y28Zy2Blvtxb-0-7f102307fc7d0b91075e2e3979d50f45)
图2-3 三级分解协调算法
算法在第一级就获得一个显式解,而第二、三级算法很简单,因而使整个计算变得十分简单。同时所需要的存储空间进一步大幅度缩小。本算法的另一优点就是用简单的办法处理不等式约束。
如果还有其他对i, k的加性可分等式约束,可以用同样方法处理。