![线性代数简明教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/562/24273562/b_24273562.jpg)
§2.1 消元法原理
导学提纲
1.线性方程组的一般形式是什么?
2.何谓线性方程组的一个解?解方程组的目的是什么?
3.何谓两个线性方程组同解?
4.对线性方程组可以施行哪些同解变换?
5.观察例题、动手做习题,体会消元法步骤;怎么判定线性方程组有唯一解、无解以及有无穷多解?
本章讨论一般线性方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0068_0001.jpg?sign=1739071349-rX99REwmImgWg4ZKTQ5PVSVjp52MgaJt-0-462ca0e0362f30fc2566851a56ee41fc)
其中x1, x2, …, xn是未知量;aij(i=1,2, …, s; j=1,2, …, n)表示第i个方程xj的系数;bi(i=1,2, …, s)表示第i个方程的常数项.
定义2.1.1 分别用数c1, c2, …, cn代替x1, x2, …, xn,如果使方程组(1)中每一个方程都变成恒等式,则称n元有序数组(c1, c2,…, cn)是方程组(1)的一个解.解方程组就是判断(1)是否有解?若有解,求出全部解.
定义2.1.2 设线性方程组解,则称这两个方程组同解或等价.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0068_0002.jpg?sign=1739071349-DoVDfPKbY5mZ3q8ribSxORzUB5Cujh9z-0-e96b091e3a748f4e2240250873b10796)
如果线性方程组(1)的解都是(2)的解;并且(2)的解也都是(1)的
定理2.1.1 对线性方程组(1)施行以下三种变换,所得方程组与(1)同解.
(1)对换两个方程(换法变换);
(2)用非零数c乘以某一个方程(倍法变换);
(3)将某一个方程的k倍加到另一个方程上去(消法变换).
证 不失一般性,设方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0001.jpg?sign=1739071349-0dAGXhk3k9LtO4g2728ka6gDqrHGvCat-0-2ae080d68e0bf27ef0f5e9a31a35d102)
对换(3)中两个方程,得方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0002.jpg?sign=1739071349-acUmLhSFjIpjDsN9PKATGpHYXm4v6qjL-0-5757abfd1e3c3dc642a0f5510637d539)
设(c1, c2, c3)是(3)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0003.jpg?sign=1739071349-muVQRkcQBzCdZGbGA8C0AADt86oUzWm6-0-020d060cd3fba7d6b58e849233bb262b)
成立.即有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0004.jpg?sign=1739071349-Uv7bLFH3DrM0rIcETRAWAVA59PAwH5O0-0-ad5a931545dc72f93833d35c506e3715)
成立.所以(c1, c2, c3)是方程组(4)的解,同理可证,如果(d1, d2, d3)是(4)的解,那么也是(3)的解,这就证明了(3)与(4)同解.
用非零数c乘以(3)中第1个方程,得方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0005.jpg?sign=1739071349-FoJppBYUA60QzDTJKxDBsL7Gj9mKVswg-0-3a007218c7b039a1e6daa80d60dcbe97)
设(e1, e2, e3)是(3)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0006.jpg?sign=1739071349-nZZvSjSaVVl48awug7Ls1kVttNK8rxRL-0-b5c724477bad72a083501dc46e3ed3f1)
成立.当c≠0时,也有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0001.jpg?sign=1739071349-ByAQeCFfWg8f0N5yCRzD1md5sTWaM2Ot-0-54cd0083327a0df144bca15ec3968319)
成立,这表明(3)的解(e1, e2, e3)也是(5)的解.反之,设(d1, d2, d3)是(5)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0002.jpg?sign=1739071349-h7RK8bweUp3wlknaVh0oabpZhqLngtDg-0-eea7f2e7c49e72777bf6d48e5d9e4b21)
成立,因为c≠0,用乘以第1个恒等式,得恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0004.jpg?sign=1739071349-rZGSPgimRHzbyS8f2ImvL6whVHo5r983-0-32c6dda35d800447e7b744fe8c6f28e2)
这表明(d1, d2, d3)也是(3)的解,因此(3)与(5)同解.
将(3)中第1个方程的k倍加到第2个方程上去,得方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0005.jpg?sign=1739071349-M0t51ZAVOX0oSw6rd1piHAFfk4q7XgoA-0-aecf2a3ca40a268f8b9e358e6cb623ce)
设(c1, c2, c3)是(3)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0006.jpg?sign=1739071349-6zU6eJadbxHzVmray1okh7S0SX7uH3pw-0-26489b970295b74abb1153708e50cbb7)
成立.将第1个恒等式两边乘以k加到第2个恒等式两边,得恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0007.jpg?sign=1739071349-Iwtt8rayFaH3o0s6xLZ08mGoLMYrTsYb-0-e979d79ce493cd43f362aa5c53e9988f)
这表明(3)的解(c1, c2, c3)是(6)的解.反之,设(d1, d2, d3)是(6)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0001.jpg?sign=1739071349-tRLyVC47qzkLDgDo7lW4ClkcbMbek8gN-0-df9839c5da7478ea6250810e3991cd09)
成立.将第1个恒等式两边乘以(-k),加到第2个恒等式两边,得恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0002.jpg?sign=1739071349-2QbgQRWjIRDxWZrQTQ6HwmunBpGGK1PM-0-a72cb18fd8ac3422065094071e6fe6c4)
这表明(6)的解(d1, d2, d3)也是(3)的解,所以(3)与(6)同解.
今后称定理2.1.1中的三种变换为线性方程组的同解变换.
用消元法解线性方程组,就是对方程组施行一系列同解变换,使每一个方程保留一个未知量,消去其余方程中这个未知量,直到能判断出解的情况为止.
例2.1.1 解线性方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0003.jpg?sign=1739071349-hdGquZnWMVQ9pGooJ2RVST60EIjpLpfL-0-da5a34624e22c4a07183b4b6ca368e0c)
解 对换 ①②,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0004.jpg?sign=1739071349-NkX2o9V6ubKkqYWXNSnxdvPhBlOmNrxR-0-94e0269fb47645ed1248b0c660870394)
②′-4①′, ③′-3①′,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0005.jpg?sign=1739071349-AfHNovHbt9eu2p2V5LNUBpEJjDYSBS81-0-16c2c53031d32c5d0bbae6a6b2bbce95)
③″-2②″,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0006.jpg?sign=1739071349-isdUPs6IDLpeOvf8VPoPcqauPwTamhGm-0-5e1936d1734bed71b0c06d0d7a0088eb)
由此可知方程组有唯一解,由③‴得x3=3;将x3=3代入②‴,得x2=-1;将x2=-1, x3=3代入①‴,得x1=2,唯一解是(2, -1,3).
例2.1.2 解线性方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0001.jpg?sign=1739071349-00VwXlCJ4rto3nNLijWzP8Cg4LGIKEEe-0-b8aa2004ef3574064827bc127885cb46)
解 ②-4①, ③-3①,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0002.jpg?sign=1739071349-jpuGjNI5mcNoR10EGkOpv5tvEpkrnTxp-0-4a2e634c145782c47f4cba88af265167)
③′-②′,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0003.jpg?sign=1739071349-xMg642h3plyFtSeSivxnCgjIDEocGmTQ-0-c93eefa6f9fb83159374fa90c7ff36b6)
③″是矛盾方程,无解.因而方程组无解.
例2.1.3 解线性方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0004.jpg?sign=1739071349-3ukXFRkVPohPRCGUer6XbCabAhkMFcHj-0-d55adb1a0a196dd3086b55e9ac8881e1)
解 ②-3①, ③-4①,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0005.jpg?sign=1739071349-pvsZMXqWLlr2e7zdbP7qj9J25rRIWg1K-0-9e569942cb95599803c0d7c7b9156982)
③′-②′,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0001.jpg?sign=1739071349-WiH3pA5Uyni13XHpiyqSbMRT19PIsyJL-0-8e94a4f9d1720bbed342ba8dda3589f2)
③″是多余方程,只需解方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0002.jpg?sign=1739071349-pQ9vtPVaRDZGDEm8wsCaqwGPSiFB9T2P-0-950b5580f7b46f5fb4683b5cce89b030)
易见方程组有无穷多解,①″-2②″,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0003.jpg?sign=1739071349-hn15YpJOqJemNfK64VcVGsF8jfob3SbL-0-f4d3f46b97d5e73d93389c6c24702018)
移项
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0004.jpg?sign=1739071349-4QlKFkeyRvvfcmtuJIHms1p8UoVzlKjJ-0-0813f91e573b660fc73ac9a7e0fc11ea)
x3是自由未知量,全部解为
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0005.jpg?sign=1739071349-zgyC9nxPXr9y1naHURmXLVfW0qijTCWt-0-221c5914fc0d152a13f10047c5fc98be)
其中c为任意数.
习题2.1
用消元法解下列线性方程组:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0006.jpg?sign=1739071349-ipOTFzvym7aNfCmgDZrpWF85KWI7LDka-0-51b2b26c5b5a3ac8716762258fde01a3)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0074_0001.jpg?sign=1739071349-IPUrJ8ysMPPXQ7iSDJAwISEoMgeh1J1K-0-fd3afb1598b877bca026d9e01e2bb98b)