![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
6.3 亥姆霍兹和基尔霍夫积分定理[1],[3],[4]
6.3.1 亥姆霍兹方程
对于频率为ν的单色光波,其场量可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0005.jpg?sign=1739534967-CjnvfTcMxZkQMIDo8WAoXx0BIzscwQ2q-0-b35053fa00c47e40c797d0bc7d8633f6)
U(P)和φ(P)分别为振幅和初相位。引入复振幅,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0006.jpg?sign=1739534967-DrjqyTIh1ABfLsgzUl1cUpBOTeFIyN9z-0-eb49e2cb876786fc8ca86b59a3770d51)
则可将式(6.3-1)表示为场量复数形式(P)exp(-i2πνt)的实部,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0008.jpg?sign=1739534967-0ihbD4uf4GBA7bYkIP8hIH22g590kbaT-0-51a71263a5eaddd04dfa5490a560acd7)
光波场u(P,t)在无源点满足标量波动方程
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0009.jpg?sign=1739534967-ZMbJhMxJ1YBpjXg7mGuVX1aY1ThMmZ3G-0-acdc27641981a5906e1c9d994228c7e0)
对于单色光,其场量对时间的关系确定,其复振幅满足的空间分量微分方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0010.jpg?sign=1739534967-u1Wsa3kitVfRwKckeqFB3wRDgPcEaU8y-0-1c9f2990779dfde937db34fa8eaf753b)
其中,k为波数,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0011.jpg?sign=1739534967-0VDie7u017ykf3c22Vnfvcyd0LeYdODM-0-4d5c6ef3bec93c7494e1e85ed5eb5a2b)
式(6.3-5)称为亥姆霍兹方程。光波场中任意一点的场值即亥姆霍兹方程的解,这个解可以通过基于格林定理的积分定理来获得。
6.3.2 格林定理
假设S为封闭曲面,G、U分别是空间位置的复函数,且在S内和S上单值并连续,并存在一阶和二阶偏导数。用G、U构造一矢量F
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0001.jpg?sign=1739534967-gdYa3dEvNbMYqFVZDWhbedXjxUIkU9kx-0-b88f90161f783e48c5cca230b08bf7f2)
则
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0002.jpg?sign=1739534967-PIWcFTvuGOxT7TnPp1guLBwWxcMRJzwX-0-3b0d28f87f715a1afa557a0e0efe6044)
应用高斯定理
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0003.jpg?sign=1739534967-ZOHVVtZ6rovtu06z8UbUD2757E8qLYJ1-0-73483cc8607f9ad8ea67c346a9fa78db)
上式右边有负号是因为n取S内法线矢量的缘故。于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0004.jpg?sign=1739534967-kIpXRCsbbz3FobKKRUxz5wjDVMCuYw5z-0-8fefe7f614f7d1d7c74a1796c88766ca)
格林定理是标量衍射理论的数学基础,只要选择合适的格林函数G和封闭曲面S,就可以用格林定理来分析很多衍射问题。
6.3.3 亥姆霍兹和基尔霍夫积分定理
为了利用格林定理来求解亥姆霍兹方程,需要构造格林函数G。设观察点位于P点,S1为包围P点的任意封闭曲面,如图6.3-1所示。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0005.jpg?sign=1739534967-rkr1tJ1UvQ9StgvFn03iai8qXqMnTIze-0-f33c64108efaade6dea906c5424155a0)
图6.3-1 积分区域
令U为单色光场的复振幅。假设G表示由P点发出的同频率发散球面波,则对任意点P1有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0006.jpg?sign=1739534967-uge4X16llYPzbDYAj8mI5u6ue3dvx4GE-0-6109c17a792f6b2ee7540dde8da0c7ef)
r为从点P到点P1的距离。若要运用格林定理,函数G及其一阶、二阶导数必须在封闭曲面包围的区域V内是连续的,但在图6.3-1中封闭曲面S1内,式(6.3-11)所定义的格林函数在P点为奇点,不满足在区域V内连续的条件。因此需要将
P点从积分区域排除,为此以P点为球心,ε为半径作一小球,球面为S2。曲面S1和球面S2所围的区域为V',则在区域V'内,G(P)满足亥姆霍兹方程,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0007.jpg?sign=1739534967-DrTW6X04knbWl8LfMdfOIBynmp8aWV9m-0-edffad9adb96cbd5ed760c91ac8f1718)
U也满足亥姆霍兹方程,根据格林定理有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0008.jpg?sign=1739534967-DuY1z0xOPjNAefI5volKnBudbw8U8CqF-0-8a3ae7dbfc3f9cea53e22d623a15e619)
显然,在曲面S2上,内法线沿径向,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0009.jpg?sign=1739534967-M6SR14RmTbiCLK4XEkyBAjeUGgnlr0A6-0-2ed630f38ddafb8b9a5ad88d00d36c01)
式中,dΩ表示立体角,Ωε为S 2面相对P点所张的立体角。将式(6.3-11)代入上式可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0001.jpg?sign=1739534967-IMcvto7XEskev1cN8dHVFJdEXBnoUANx-0-3a215574fda323e8867034edd2aceb24)
注意,在得到上式过程中用到条件及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0003.jpg?sign=1739534967-wcVmjQ1CN59OCAX5XvKIAmenyTqgHI6s-0-89adb23d3e98b24d853441f36cf02a7e)
P1为S2上的任一点。假设ε为无限小量,并且函数U及其导数在P点周围是连续的,则式(6.3-15)右边第二个积分趋于零而第一个积分变为4πU(P)。因此
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0004.jpg?sign=1739534967-5g6nq1kdTNPWc9cXHKHp6sBvhTm1tqmW-0-11e7272a683310951cccb5c722fdf579)
将上式代入式(6.3-13)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0005.jpg?sign=1739534967-Jz1NhwcXR4XK1HU8PtfTTEHk5ChcQD8d-0-b1bf032f8305e6d3ada8149b9f865586)
或者
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0006.jpg?sign=1739534967-RSD8bJOB3vG0NpeZ48jX8h8PxalKsOrg-0-21b10926283d2f2a8350e00ba0fe5900)
式中,r0是位矢r的单位矢量,式(6.3-18)为亥姆霍兹和基尔霍夫积分定理,它给出一个重要结果:如果某一函数U满足亥姆霍兹方程,且函数U及其法向导数在某一封闭曲面上已知,则该函数在曲面内任一点的值都能够确定。