![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
5.3 光纤[21],[58],[59],[63],[65],[67],[68]
前面对平板介质波导和矩形介质波导进行了分析。这里将对广泛应用于远距离、大容量通信的光纤进行分析。通常光纤是一种圆柱形的波导,按照其折射率的径向变化可分为阶跃光纤、渐变折射率光纤等。还有一些特殊的光纤,例如双折射光纤、椭圆光纤、蝴蝶结光纤等。本节将简单介绍阶跃光纤的电磁场理论。
5.3.1 导模与本征方程
由于光纤具有圆柱形结构,采用柱坐标系讨论比较方便。设光纤的轴沿z轴方向,纤芯半径为a,折射率为n1,包层折射率为n2,如图5.3-1所示。
在柱坐标系中,电磁波的电场强度E和磁场强度H分别表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0011.jpg?sign=1739305442-m3go5lHHDTgzV2Lu6Goo4Xb9VT5uHt8v-0-12d15173be993263227ad1da1e8e3828)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0012.jpg?sign=1739305442-sTKlgFMPKLssmegEnLjoasAjsyEmBLZx-0-1dc3b064618e837f117be0ae9a31c410)
设时谐电磁波沿z轴传播,则光场各分量与坐标z、时间t相关的因子可以写成expi[ (βz-ωt)],将该因子代入柱坐标系中麦克斯韦方程的两个旋度方程可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0013.jpg?sign=1739305442-uWwg98t0xahtfB7VxLeFTH3SmVsgIUpx-0-09f0f42c83bd7603115466b25c11362c)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0001.jpg?sign=1739305442-TJR933fxGaV89wQepRPFlNIyDVUGn3Z4-0-24b1e554d0024fec27180ce135eb6095)
图5.3-1 光纤的柱坐标系
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0002.jpg?sign=1739305442-A5uzlLMg6EXADuSLnglJlfUAMEkvZVz8-0-d5d6d04a2c4c4ef53ce317e24cbb6140)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0003.jpg?sign=1739305442-S3sPwpvy9xR8g06OafK6OluY4g8AnTWI-0-7736be129fed17a9577079c49db43684)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0004.jpg?sign=1739305442-QDuZ9QVlYcbhDuZoBs2NTvSXYuKUCICa-0-5e1035490b2a4e7a8ff53c4d7bf806d8)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0005.jpg?sign=1739305442-pn0GME1lhcc1vciVbjHjGufvBO0qsbbJ-0-36e736e87014e94d7dd455b5c20c1b66)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0006.jpg?sign=1739305442-NnxpknVPntsMEcYm2fLeXxB8p9CycJ8d-0-5b70ec90f9721131dddd2894f904f21f)
如果介质中没有自由电荷与传导电流,Ez、Hz满足标量亥姆霍兹方程,在柱坐标系中可以写成
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0007.jpg?sign=1739305442-aIJtthyMKD8mnFlWzCb6b5MtT2nHh90O-0-8c3e7c60f64d86bc4c79de7081b0b6e9)
式中,ψ表示Ez或Hz。
采用分离变量法求解方程(5.3-4),设试探解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0008.jpg?sign=1739305442-csFCVeLG61DzvUsByhZTCTtobhfVwu4d-0-fa81770956a8ea23a97db6aa99382922)
其中,m=0,1,2,3,…,将上式代入式(5.3-4)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0009.jpg?sign=1739305442-5hQVNoP45cGcNrboG0uCcaiUgUBkl2Zp-0-d78652338075222598f0178bdb214fbc)
方程(5.3-6)是贝塞尔方程。令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0010.jpg?sign=1739305442-3QPmGz8LvoeqidfNj7XFXc7CWbsaC8A6-0-1f8c9fdae42ca5de53fa5005ac2ad0ae)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0011.jpg?sign=1739305442-E0jUvp96SX6CQN5wZp1ms0NN8Rie2Cdx-0-0ddfb99531e40c6b720462d2da17cd53)
则在芯层,方程(5.3-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0012.jpg?sign=1739305442-ihqGYBpJBNgoPVhas0rzwF8KoJ9lKBpE-0-6a2d15997eebf0811b80134afb7f0b45)
在包层,方程(5.3-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0013.jpg?sign=1739305442-U0O5zWgTvimuYanh57onJSeqBjtLkfQC-0-94e3c894c2de82146dd4a6638575384a)
考虑到在光纤中传播的电磁场必须满足:当r<a时,E(r)有限;当r>a时,E(r)趋于0。因此可以取的解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0014.jpg?sign=1739305442-BvojEeL8Lq5pZjTVNYinnBq4EtJozDQ3-0-04ff94ce6263f870df63674ca7fbb3f6)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0015.jpg?sign=1739305442-V6srXjVwKatyMm7TOoyeL5XPrtlGcmcC-0-27f06b30c30dcc6dde6c0170b17f64ed)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0001.jpg?sign=1739305442-KXSKc2QU03L5kizgOSXqaG6W6UaSiva0-0-3e4d2bc2e6a0dd7f836d93ed015bab0b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0002.jpg?sign=1739305442-2OrzIFIk0kb8DztWVEHulOjJTmiwUIPd-0-ca74b6b797dedc64d2ec56d28f77017e)
式中,。令Ua=U/a,Wa=W/a,Ua、Wa分别代表光纤芯内的横向相位常数和包层内的衰减系数。Jm,Km分别为第一类贝塞尔函数和第二类修正贝塞尔函数(汉克尔函数),图5.3-2(a)所示为几个低阶的第一类贝塞尔函数曲线,图5.3-2(b)所示为几个低阶的第二类修正贝塞尔函数曲线。
在芯层与包层的边界处,电场和磁场的切向分量连续,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0004.jpg?sign=1739305442-yzZzXzaSofbtWSOceuwHeRdZ9KfeBlSH-0-0c9ae5b13c2957df66cf6d8a36b37e2c)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0005.jpg?sign=1739305442-jLKwy2KjS6O2qJxZ4Z7Ykdt2u8bB3eY0-0-6a6fc63a9a454e6fcbf5569df862dede)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0006.jpg?sign=1739305442-5Vn9KVv9NnrTng6a0woecZMw7utDbW98-0-7b5cec2aefc4928a1348a3d772266e90)
图5.3-2 两种贝塞尔函数曲线
将式(5.3-9)代入式(5.3-10),得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0007.jpg?sign=1739305442-VvkSMS5sD2ipbZ3TMKDTgcOOII0Wd0Ut-0-36c1029a2acf201256185354df90e4d5)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0008.jpg?sign=1739305442-O9WSkGQRwXWbksMdz7dpjgDnvzCogUuN-0-c58779668233ffa6957b07224f3e1aa9)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0009.jpg?sign=1739305442-hS2zCRt8MCX4Ak94D2Ei11nh9yKCwmUp-0-1ddf030473d8d0c2873504d438e1e21d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0010.jpg?sign=1739305442-6MInr7ZcraS69ZO7kGDYBWruTf3itinC-0-6e7b21ee27fc56904d89383dae9b30f7)
这样,可以将纵向电场分量和纵向磁场分量表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0001.jpg?sign=1739305442-POtjLxBXBQxbjO8bgjKXzaNEWEPVb3ln-0-be7fb7fe1886fed23060f1429aee842a)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0002.jpg?sign=1739305442-2mZ7UG8dhF3NSbnCxM5SXUE4jy94bQDN-0-51755024f42b09b2277141693a39d531)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0003.jpg?sign=1739305442-gr88GxtaKpWavr9PWXRB0rQ7hnsDT8M6-0-6db04dee6735d451dbede2f19c739c46)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0004.jpg?sign=1739305442-ro515M0disrWAhfAa34H8n9ZnIXlfY4u-0-3243f922c492129374fb820469488c65)
上面表示中略写了各项共同因子exp i[ (βz+mθ-ωt)]。求出纵向分量Ez、Hz 后,就可根据式(5.3-2)和式(5.3-3)求出其他横向分量,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0005.jpg?sign=1739305442-dmeKWzI0mUjN4dN0BfQedCWhtC6E7pEA-0-e7e31bdb695f553195ee2bb46aed243c)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0006.jpg?sign=1739305442-z0A1s1N1zVH5xjeFhkRtHuHHta3MBCc7-0-8ec6a39487e16f91700d2101446f5f2b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0007.jpg?sign=1739305442-K8Tp2N8SNj0BOsKlmcG50ANtkPoR5V3I-0-0174cf002a51128ca0cbd8fb2de65f68)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0008.jpg?sign=1739305442-3XrdGJmQGV6tZ6ztuWPBawBIPFgmVQwd-0-617c232c25cbeb4157c76087139df761)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0009.jpg?sign=1739305442-NChn7cXuB8cQuuSH88KUxYWnxpqWU0sE-0-231f33003affb27d83d48a7b688b0ef2)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0010.jpg?sign=1739305442-w59hvwEGhoP5WwwZQb7duS2nx7gI9Q9A-0-a580f5bb06a40114ba8f522dc6a265f7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0011.jpg?sign=1739305442-qKqzVhCiXjZwCMtFcQWPaqxZDq26e2Xz-0-65e02274db77b7204b44ef8f0065f50b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0012.jpg?sign=1739305442-0eWF9HxaoOxTaqs60ty93O6fyYJry2LW-0-734348bed3438d491e049fb9e192b941)
将式(5.3-13)各式分别代入式(5.3-14)中对应式,得到电场和磁场的横向分量,依次写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0013.jpg?sign=1739305442-0itZxjqcaw8TaATxKVuqZnBxXbnv31cM-0-b94ea4980eb4e9885cad6942de9b99bf)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0014.jpg?sign=1739305442-Rgc8CSDnOT4iRppjwcPjk2QwMBXxGoRZ-0-dff5240ea7bee5cbc212008e0884131d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0015.jpg?sign=1739305442-BYsqYlum7YEf88iq9rqghmEAnzIuSRqN-0-be706a5333f3c162f1d6223d97a7e917)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0016.jpg?sign=1739305442-eYSpCbFLOlLdcaFjJqBEInL6QavEuP1j-0-e4f428047b9d6676ad6be3d861dfd89c)
以及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0017.jpg?sign=1739305442-pchSYSxgDN0UgCtbSmoYlC54gNiwlzIn-0-41992d3a808f429f504f8237a706e883)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0001.jpg?sign=1739305442-hDLfA4EFHEJ3mStvx40TmDCTX3aklBpT-0-9d823dc5f1e2c702b44980f33aaeed44)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0002.jpg?sign=1739305442-DL4CfO0vKYULMu51i3InxT97fVcKuysd-0-c5ece1d28fa5fd254f09881cc99c7764)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0003.jpg?sign=1739305442-0Bd82g45gFhdb4m0MJij8MBDo113s0KZ-0-b153413dcca71f194a631ef52cdfa380)
式中,J、K上面的“·”号表示对r的一阶导数。利用纤芯和包层界面处电磁场连续的边界条件,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0004.jpg?sign=1739305442-Qae8pJY68g6WuP040Ytmn7FowQ8etbbh-0-1c8e8195d49196acd9e77d4e21750db9)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0005.jpg?sign=1739305442-SkMMUQNbdvsxVtRCilFPuD5BumrLcW0a-0-0145d2f16c41bd4754617fc4804401c3)
将式(5.3-15c)、式(5.3-15d)代入式(5.3-17a),以及将式(5.3-16c)、式(5.3-16d)代入式(5.3-17b)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0006.jpg?sign=1739305442-OLROOFLZlhEoCclt9nTlbnClWKOg6DLf-0-18e214e511ca87db4ee4df65bc5a312b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0007.jpg?sign=1739305442-KCOX94lVGALXmJQCr85l0tKIeukRQnAR-0-ef156be376ecfc555b2b5ad2b9c0795a)
注意,式(5.3-18a)与式(5.3-18b)右边相等,经过整理得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0008.jpg?sign=1739305442-i0WELaIYOfFSbICGgYn8XBaz8MsHKYfp-0-27cf8756473b575bdcf6877d56110430)
上式即为光纤的本征方程,式中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0009.jpg?sign=1739305442-XuPNrYERMpw4L84BioKBRlGMQVvxrA9H-0-43e0e7cc68341a3f5904e54bb2cb238e)
V称为归一化频率。式(5.3-20)中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0010.jpg?sign=1739305442-Nzz1jJjjqq63me0bz1zdiYN9gEKZRoIA-0-816e5e73d412c212e02719132bbbc7da)
将式(5.3-19)与式(5.3-20)联立,可以求出在一定波导结构和波长情况下U、W、β各参量。在弱导条件下,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0011.jpg?sign=1739305442-j86l5vhILizge46g8GYsGotK8LTsJQ81-0-735e9ad8eb4bbbb7055a2db4dba6764c)
式(5.3-19)可以化简为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0012.jpg?sign=1739305442-h75ZOpydzgpaxPNVpGA1cLoIed1WtbMd-0-4eb86af37a773fe722d721410dc86643)
式中,m=0,1,2,3,…。
5.3.2 导模的分类
光纤中的导模包括TE模、TM模、EH模和HE模,下面依次简单介绍。
1.TE模和TM模
TE模对应于纵向电场Ez=0的电磁场模式。根据Ez表达式可知,对TE模有A=0,进一步可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0013.jpg?sign=1739305442-74UPX5a5ymTLpjQ776fYpdHdlosKml1M-0-2ac9779b91b4a9a378bea81712d43683)
由于B、β、U、W均不为零,因此上式成立的条件为m=0。此时,有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0001.jpg?sign=1739305442-JTWsJ5q9ZZoo0zJC7dM7a6PxlSCe17mq-0-3c38e1899d185701e539cf86d769a528)
上式为TE模的本征方程。利用贝塞尔函数的性质
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0002.jpg?sign=1739305442-KPmo4tL5PDsQqzVFvgguo2iAMEeZqc4K-0-c515ebd89f04e9236e8ec1cc502f22bf)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0003.jpg?sign=1739305442-MWtZE19D0epU2jZ6KPa2sNUqOsfd5hMS-0-3c323f292dd6646ec9cc7eab1a4790e9)
可以将式(5.3-25)表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0004.jpg?sign=1739305442-zOyKSWQsO4GdN1lhD3cRiAbBkeqkofX6-0-108075ffde20cf1097ee8367f88cfe96)
TM模对应于纵向磁场Hz=0的电磁场模式。由Hz的表达式可知,对TM模,有B=0,类似分析可得m=0。于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0005.jpg?sign=1739305442-Ir3TXMub3Ft6LaV9qkGFDyHQ95c1XwDk-0-714c4cbdb50ae95e79346eb13b7696a5)
上式为TM模的本征方程。
2.EH模和HE模
当m≠0时,A、B都不为零,表明Ez、H z将同时存在,不存在单独的TE模、T M模。这种Ez、H z同时存在的模式称为混合模,其中当Ez起主导作用时,称为EH模;当H z起主导作用时,称为HE模。
在弱导条件下,EH模和HE模的本征方程分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0006.jpg?sign=1739305442-SHKh7npqZFGgJVzAbXUuUHit4ziTgu92-0-a732945e167c35cbd89f813240ee62c5)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0007.jpg?sign=1739305442-v6PeW74Enxe9k2BgoF6KGfRweGScAtFj-0-ae562b2bf71fbaf90d8dd87998c32fce)
利用贝塞尔函数的性质
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0008.jpg?sign=1739305442-EizVOPwSxel22pqlVoHMjvWaXdFAyRYR-0-f04a18429deab33d8414e4e2552eb6ec)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0009.jpg?sign=1739305442-it7oUy2HG4leXDoqOzAKcAjrl1uEMuNg-0-8675999b48ebaaf55680a662cda38147)
化简后得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0010.jpg?sign=1739305442-OxC7Pks2foIZUCngGqGwJfvA8XUTwnZ0-0-e60130b19c2d41818ea0140fa13d04aa)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0011.jpg?sign=1739305442-ogU4R440sGCRBYDsEkYzVXPIxfXyAvEE-0-05d027073934fb2fdf494a4e580aa493)
5.3.3 导模的截止条件和截止波长
1.导模的截止条件
当导模在波导中传播时,主要能量集中在波导芯层,沿纵向无衰减传播,U、W参量均为正数,导模场在芯层为振荡函数,由贝塞尔函数描写;而在包层中,导模场为指数衰减函数,由汉克尔函数描写。
U、W参量均为正数的条件为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0012.jpg?sign=1739305442-Y7Df87qFtLt7f9fkMpktGnMXYeu86v9E-0-2e0b3a527810cc598d6bfd66baf2c18a)
如果,则W2<0,包层中场量的解变成振荡解,即出现辐射模,导致光场能量不能集中在波导芯层传播而截止。W=0为导模与辐射模的临界情况。因此截止条件为W=0,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0014.jpg?sign=1739305442-RMMR6pGZcblCrmvUcvy7jTNr21hdnSNP-0-937368132eee57e4cf90565de9c847bd)
归一化频率Vc满足
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0001.jpg?sign=1739305442-OTPmmLr4acU7n0I9Qau2nIHAmG3xGCtR-0-983af4451985710f5e66ebbbd8804272)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0002.jpg?sign=1739305442-0xu5nlFEiUgW4ea7fQl2KMRlwKYs7zlG-0-a595995184f9b9db9dcbbbab30e09f36)
通过本征方程求得Uc,进而确定Vc,最后获得各种模式的截止频率。
2.TE0n模和TM0n模的截止波长
对于TE0n模和TM0n模,因为m=0,所以式(5.3-19)变为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0003.jpg?sign=1739305442-lcGd77TzyjbiSxC1uFKgrUVkjf8ttGAh-0-4481bf7a8c33c51794c71b4474b48807)
等号左侧前后两个因式为零分别对应于TE0n模和TM0n模。当W→0时,式(5.3-36)要求J0(U)=0,这就是TE0n模和TM0n模的截止条件。因为J0(U)是个振荡函数,它有许多根,不同的根对应不同阶模的截止条件。当n=1时,U01=2.41(U01的下标01表示零阶贝塞尔函数的第一个根),说明当纤芯半径a满足方程U01≤2.41时,TE01模和TM01模就因为截止而不存在了。对于更高阶的模,即n=2,3,4,…可以依次类推。截止时,归一化频率为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0004.jpg?sign=1739305442-lFETXyfcuMzJ1kwehENbBUTp8MuRxrEH-0-bb79ff9504a14061e566017da091390f)
当n=1时,对应的模TE01和TM01的归一化截止频率最低。由于U01=2.405,可得TE01(或TM01)模的截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0005.jpg?sign=1739305442-3X3vtLLDYVt6qn5hwUUrp09suK7CKn8a-0-f46791a9806768d5582bfe71836817ec)
当光纤的其他参量一定时,若λ≥λc,则相应的模式不能在波导中传播。
3.HE mn模的截止波长
截止时,W=0。根据HE模的本征方程,当W→0时,式(5.3-31b)右边的渐进特性应区分为m=1与m≥2两种情况。下面就这两种情况进行讨论。
1)HE1n模
当m=1时,本征方程及其渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0006.jpg?sign=1739305442-iHXJ8ZuY4oPlL3RaADiQteYy2LPLIzzD-0-5d3820d7d343b1367e9fe61c21174a98)
因此,当m=1时,HE模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0007.jpg?sign=1739305442-yVypqrm7qkEawjLhF5kL7sQGmJbrOF0c-0-078aee7b7177ff1b40c65eba699b89ec)
其解为Uc=0和J1(Uc)=0的根Uc=u1l,u1l表示一阶贝塞尔函数的第l个根。但Uc=0是否应舍弃需要进一步考察。因为当U→0时,J0(U)→1,因此是本征方程W→0时的解,应该保留。这样得HE1n模的截止参数为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0008.jpg?sign=1739305442-NzpdXKDCmbxVMM2bYuPHobkY2fbgLCuh-0-8ccfd1928e00db5fbc5986b2ddcbc731)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0009.jpg?sign=1739305442-gU97FFU0dCgODgOH5ZYSEEPnYYhU5jno-0-99af90a695fd10b5be03c91e50193729)
当n=1时,U11=0,对应的截止波长λc(HE11)=∞。说明HE11模没有截止限制,所以称为光波导中的优势模(即该模总是存在的)。
2)HEmn(m≥2)模
当m≥2时,Km(W)的渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0001.jpg?sign=1739305442-MKO9LzyIPowuP6CAHB10kiVNtKk9rWUm-0-873f2652d2b452a767f5d57dfd95b581)
利用贝塞尔函数递推关系
2mJm(U)=UJm-1(U)+UJm+1(U)
将式中阶数降1,即m→m-1,得
2(m-1)Jm-1(U)=UJm-2(U)+UJm(U)
因此当m≥2时,本征方程及其渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0002.jpg?sign=1739305442-pMbSQMWtDnxvArH3C2Y8wxtJaFkJKCZo-0-5e6c24bd797767753facc8a71ffe80a5)
于是当m≥2时,HE模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0003.jpg?sign=1739305442-JToC8oCYj9Ve2U3pdM4hUJmrZohuasUa-0-a182481d882be9fd864ca2b80c6c21bb)
上式的解为m-2阶贝塞尔函数的根,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0004.jpg?sign=1739305442-J5kLBb4BiRswGUI3LoFKVEuB87FD3yaq-0-2dd6db036b760836b4886b083470c13c)
对HE21模,U01=2.405,截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0005.jpg?sign=1739305442-VBPKVqlFGEgOGrzT94YPJSoHXXTy3EpP-0-27085b3fffd044eaa2f52701f1feef03)
容易验证,HE2n模与TE0n模、TM0n模具有相同的截止波长,它们是简并模。
4.EH mn(m≥1)模的截止条件
根据EH模的本征方程(5.3-31a),当W→0时,该式右边的渐进式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0006.jpg?sign=1739305442-GLlgPJZPHYr4RRw8apYa7QcOfghRtxDl-0-717cf3ec3b718108534f658046549c66)
因此有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0007.jpg?sign=1739305442-g7GzTwB9qL8qtHF6h28vWQj1BuoNXnTG-0-a93483d2d365e9c6bdf64e7b01dbee28)
注意到当Uc→0时,上式的渐进式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0008.jpg?sign=1739305442-vcKIYUlnrIFPbLKnL6DkS3KX5ectp4sb-0-f3733406dec6a39fa88cfb736fd0f106)
可见,截止时Uc≠0,因此当m≥1时,EH模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0009.jpg?sign=1739305442-8VAzK3Qj3MMDSyQJ7SsThBLlLPKDPouz-0-8f2144a9f909d0e53f159a0a96c3d056)
这里Uc≠0表示,Jm(Uc)=0的第一个根要从Uc≠0的根算起。这样,截止参数Uc或归一化截止频率Vc为m阶贝塞尔函数的根Umm,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0010.jpg?sign=1739305442-iFx3uF92qsY5asdwm9JgmoRnIUBGCVcO-0-60aff167173f5871a45c3de27124980f)
例如,对EH11模,U11=3.832,截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0011.jpg?sign=1739305442-hUg4rChKyboA0aCVczCSoqFG6syvIRVo-0-75b27a455ea8189d1f9b586f13e7b340)
5.3.4 色散曲线
光纤中导模的传播特性与U、V、β等参数有关。U、V决定导模光场的横向分布;β决定导模光场的纵向分布。归一化频率V是与光波的频率、波导尺寸及折射率分布有关的无量纲参数。一旦归一化频率V给定后,则根据本征方程可以确定U、W等参数,并进一步获得纵向传播常数β,也即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0001.jpg?sign=1739305442-n5BFqntkkU27Z9v58OcZFnQbSlI3p198-0-287184ee09f4210a707d3b4cc8a88ae4)
改变V的值可以得到不同的β,从而得到各种模式的β-V关系。另外,波的相速vp和群速vg分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0002.jpg?sign=1739305442-wpbD1UmN90zxDwZHa002De6EMHXWcX4P-0-6bcbbb75dac6940153615f0712c7d1b9)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0003.jpg?sign=1739305442-92O4S8i1vDJMkRf0UxNOQ1ql36GW6Xbm-0-f014517197a55ceda2478563bda32aad)
如果知道β-V关系,就等效于知道β-ω关系,即色散关系。根据色散关系,可以获得不同模式的群速和相速关系。图5.3-3所示为几个低阶模式的色散曲线。图中横轴表示归一化频率V,纵轴表示归一化相位。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0005.jpg?sign=1739305442-Nv9AMs4YowDHU19IMa8td97E2dpHIF7o-0-ae87b541426088cebb621eb1c9496eba)
图5.3-3 几个低阶模式的色散曲线