![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.3 高斯光束[10~12]
稳态传播的光波满足亥姆霍兹方程,柱面坐标系中的亥姆霍兹方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0001.jpg?sign=1739306118-rkDXcagn7XbS3HPtKJ9rNUjSxYjhfTwZ-0-aec2ff8e6dfb25c24349b41590837acd)
设光主要沿z方向传播,电场复振幅沿z方向缓慢变化。在缓变振幅近似下的解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0002.jpg?sign=1739306118-UF1EajRPQgCYBzS4kk5r3P1RFhOFrnqa-0-615cab819a9f2d3c6146c191bcd35155)
所谓缓变振幅近似,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0003.jpg?sign=1739306118-TqHp3yx1vCPedcC3zOdtX8mg64lCnWlW-0-035b94e3ea7916162aaf147e73085d41)
将式(1.3-2)代入方程(1.3-1),并利用缓变振幅近似,忽略对坐标z的二阶导数,得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0004.jpg?sign=1739306118-mGNudmwlJR05tV1Zfx0EALqDIhmKsy80-0-0afb3c0fe2b93fbea984cd8310aca76a)
在z=0处,振幅为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0005.jpg?sign=1739306118-KzD7ZOiykAjVaT7eG2dvWPIK75QCXNmt-0-849b8f843bc5753e14b8c0bc3fb40e54)
设试解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0006.jpg?sign=1739306118-y3BKyf2xoLOM8w9AoxVVh0Fj7iKg1Dcv-0-15eddbfcea7a3324dcf8bd4ce288ea5e)
其中,函数f1(z)和f2(z)满足
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0007.jpg?sign=1739306118-JQbuGwqaHJscIQNR8lMmurN8p541oUeC-0-420a3fdbe33a89bb36664dd9d8212527)
将试解(1.3-6)代入式(1.3-4)得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0008.jpg?sign=1739306118-hRyKS5nducGXDgThbh7NRkdbY39QJViE-0-65b1a2bc0a3158d91c97c0938a380757)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0009.jpg?sign=1739306118-vUy8GRT9VzvQqzjUhfbqWMLOI0TN4Wz7-0-544fa1ef59339c1903369f14e5f2592d)
其中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0010.jpg?sign=1739306118-oSacT2MQeioRxBiBp7xic66Ri7hO4owc-0-409afd2fded1742e8105209c43b7f8a1)
式中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0011.jpg?sign=1739306118-usY0YW0StauscjcjYvsFSHQpoMd4l3vY-0-3b7ec0f9825eed9c348707b5ff6b09d5)
Z0称为瑞利范围或瑞利长度。将式(1.3-9)代入试解(1.3-6),得高斯光束的复振幅为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0012.jpg?sign=1739306118-7jUeWGkfQHkcvupHQuZA2vOEJNdQCZSc-0-7becf2ec489d4bd9d5fa1c7768f2adba)
或
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0013.jpg?sign=1739306118-ZxSR7lYO8BMjyz93JboRxcTi3WpWKzWG-0-6df6bf1ab07e4ff63bfc898e214a7218)
于是,高斯光束的电场强度可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0042_0014.jpg?sign=1739306118-XaBOHM2z6JqDklJAvT9yXCpgUmlB9fDE-0-3618d5d6c45426bb0edd43b158b07d2b)
下面介绍式(1.3-13)中参量w(z)、R(z)、φ的意义。
1.3.1 高斯光束的束宽与远场发散角
在z为常数的平面内,高斯光束的场振幅为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0001.jpg?sign=1739306118-SoVep3GzXrQU0xGJ8jB5iXZWXwpvO69S-0-4c685e8b5ad3531ad5aaca692afc01f2)
这是一个高斯函数。由高斯函数的性质可知,w(z)为场振幅下降到中心值1/e处的半径值,因此称为高斯光束的束宽。束宽w(z)随z变化,具有以下形式
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0002.jpg?sign=1739306118-EQj2nMu75MqF5x5XgEqidQlJt5ofYwbk-0-dc548ee9a3dac955adc4deb78faa8365)
或
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0003.jpg?sign=1739306118-Yqo6O0IHUqCRfaK8avHCYoJUZfIMdhL5-0-8d04abfdf1743de09acfad0f94f80bc8)
可见,束宽按双曲线规律向外发散。在z=0处,w(0)=w0为最小值,称为束腰。引入远场发散角θ0,定义为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0004.jpg?sign=1739306118-SMB7YpBTedq5euNq3Q7CDpJFMxogKhz2-0-f03bc4d229c35d17b7f93b4845872aa7)
1.3.2 高斯光束的等相面曲率半径
高斯光束的等相面方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0005.jpg?sign=1739306118-2kzUDyQmV7kGt3kjjDmFIWfkPIYcp5qQ-0-caa10215b50bb5d526d0b555ead8cc37)
这里
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0006.jpg?sign=1739306118-a9EJkIv7jrK8VddmFyBa9IHqUhW2m5Rx-0-897a8313e80011fc9da78b9269db4b43)
在傍轴条件下,φ(z)可以略去,故有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0007.jpg?sign=1739306118-YSlhPBedvWNJGssCCsHCbUTaUYlrQcxr-0-50deebf1e3a80f5943b00f48137a0d8d)
除z=0面外,等相面为抛物面。上式也是原点在(0,0,a)、半径为R的球面方程的傍轴形式,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0008.jpg?sign=1739306118-U6eE66KJvC5czfu8ucbwZzrliyDMZjrm-0-436278b5b0b2315f48079b2c60422e40)
当z=0时,R→∞,等相面为平面;当z≪Z0时,R~/z,等相面近似为平面;当z=±Z0时,R=2Z0,取极小值;当z≫Z0时,R→z,在远场可看作由z=0点发出,半径为z的球面波。
1.3.3 高斯光束的纵向相位因子
高斯光束的纵向相位因子为φ=arctanz/( Z0),总相移为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0043_0010.jpg?sign=1739306118-eLEMyRMUM0k0ASpPmALnlfq9xEeHDG83-0-38bf2afae8064ced09de05af7fc6c1ba)
它表示高斯光束在点(r,z)处相对于点(0,0)处的相位差。其中kz为几何相移,kr2/[2R(z)]为与
径向相关的相移,φ=arctanz/( Z0)为高斯光束经传播距离z后相对几何相移产生的附加相移。