![电工36“技”](https://wfqqreader-1252317822.image.myqcloud.com/cover/826/654826/b_654826.jpg)
第1章 电工计算基础
1.1 常用计算公式
1. 展开式
(x+a)(x+b)=x2 +(a+b)x+ab
(a ±b)2 =a2 ± 2ab+b2
(a ±b)3 =a3 ± 3a2b+3ab2 ±b3
(a+b+c)2 =a2 +b2 +c2 +2ab+2bc+2ca
(a+b+c)3 =a3 +b3 +c3 +3a2b+3ab2 +3b2c+3bc2 +3a2c+3ac2 +6abc
a2-b2 =(a-b)(a+b)
a3 ±b3 =(a ±b)(a2∓ab+b2)
a3 +b3 +c3-3abc=(a+b+c)(a2 +b2 +c2-ab-bc-ca)
a4 +a2b2 +b4 =(a2 +ab+b2)(a2-ab+b2)
(ax+b)(cx+d)=acx2 +(ad+bc)x+bd
2. 二次方程式
ax2 +bx+c=0,a、b、c是实数,且a≠0,则该方程的根为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0001.jpg?sign=1739298520-BP0fHHG0IPnDD0f3zvnx75njSW3c3mT6-0-42deba57e1fc29cee462bd2342b18b95)
且根与系数的关系为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0002.jpg?sign=1739298520-auowtAk38vJJF93w7tbSIN8g2VdjRvfU-0-a3ecf89dce8d6e0ba98eb822942bec82)
判别式为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0003.jpg?sign=1739298520-T7tRTifNcsdVPPS1tRyNIMy237JLW3Yx-0-10f1248893091d98ac3667ed3b94daa2)
3. 指数定则
m、n为正整数,a、b为正实数,则
am ×an=am+n
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0001.jpg?sign=1739298520-3tAfpqAfy1utwiGUBw4GGtzlI04NKASC-0-c0a8bf933f5fd6fbb3920bd182502f1b)
(am)n=amn
(a×b)n=an ×bn
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0002.jpg?sign=1739298520-JUOUoiLUtvMcAWLbsBeFIcvDekPOGP2V-0-aad494e1911b6bad42b8a82186a45208)
a0 =1
4. 对数定则
x、y、a、b、c为正实数,则
logaa=1
loga1=0
loga(x·y)=logax+logay
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0003.jpg?sign=1739298520-JxJDfCoaIJLIdYZrwZxkk6Cu9UuNVYxy-0-39c55d34896c8aac3d801367f16ed84a)
logaxn=nlogax
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0004.jpg?sign=1739298520-rdL10H27Ov9szRYwu5EsR2sWd4AX4T5v-0-bffa6672095da1acca0c68652a8622e9)
logax=logab × logbx
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0005.jpg?sign=1739298520-gYMPQyPX8RoXMSs1PcfeF05EPBU0ETMZ-0-9a69d144e5ceccfdb58aef8089e06bb0)
logab × logba=1
lgx=lge × lnx=0.434 3lnx(其中e=2.718281 8)
5. 级数定则
等差级数
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0001.jpg?sign=1739298520-yzujWmYM1pA8lcDRBSvhZ5OhB1nVLsyj-0-1cac1d3dcbae6543959725f70c1e9bb8)
等比级数:a+aq+aq2 +…+aqn-1 ={L-End}
某些数列的前n项和
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0003.jpg?sign=1739298520-0KtPhsLEAkP2BAlzoyyVdZI21w9lho3f-0-05ed9a773865bf0bc64ec0c478f9f663)
1+3+5+…+(2n-1)=n2
2+4+6+…+2n=n(n+1)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0004.jpg?sign=1739298520-m4kuYTsht4ohRxesHy06ZkxSM8s9pA34-0-ec08726ba41f8f9df1bc8e5428ac3e9d)
13 +33 +53 +…+(2n-1)3 =n2(2n2-1)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0005.jpg?sign=1739298520-Jb6BXGsFOYDFZDhWxG1PPd2oCcHzxnYQ-0-0a5c2d9ab124ee16e2d8c31b6a9160f9)
6. 二项式定理
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0006.jpg?sign=1739298520-gHx76BFsbk1dfsjKBBAJJt8bxnWEoTRm-0-9f68e3614b1101eef84a41d216819962)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0001.jpg?sign=1739298520-5PtNJEp09fOYsGyW9M3crIArUdHBxRT7-0-9a51c38db41daeef7661c3ad42ba8e0a)
7. 近似计算
当a≪1,b≪1时
(1 ±a)(1 ±b)=1 ±a ±b
(1+a)(1-b)=1+a-b
(1 ±a)n=1 ±na
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0002.jpg?sign=1739298520-3Sj9x5fGHR9YQx2BSmjLdC4dH5xqILoe-0-21f5ac00fca53247b54d7ba06b026c95)
sina=a
cosa=1
tana=a
8. 三角函数表(见表1-1)
表1-1 三角函数表
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0003.jpg?sign=1739298520-eEIJ0BY1x9rhrkXnhmwHGbFwBsPKIXiP-0-a2dad76f28f910ccf4bb1aac60ea1803)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0004.jpg?sign=1739298520-ZBbMmst0NHhKtr8Dlp91Mxg3rrtjgo6X-0-a05e2898894a13e8badfca183aecf972)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0001.jpg?sign=1739298520-wqQnuVnoLNhFfsE2EQ1AjojrNtr7scNu-0-6d6862ca438bca2e872e128ed1be28ab)
sin2θ+cos2θ=1
1+tan2θ=sec2θ
1+cot2θ=csc2θ
sin(α ±β)=sinαcosβ ± cosαsinβ
cos(α ±β)=cosαcosβ∓sinαsinβ
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0002.jpg?sign=1739298520-TGvtIoPZG982m7KTyT5VRIW2L9L8Cifa-0-e0ded75209ab85d80c4c429db541ed22)
sin(2α)=2sinαcosα
cos(2α)=2cos2α-1=1-2sin2α
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0003.jpg?sign=1739298520-B67o3DbxNv0MDmRoxy5ZvuI8o5PGxwrR-0-d56fe63605831b7128acf1778dfd9feb)
9. 复数
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0004.jpg?sign=1739298520-Lt2obi6ul6n6dRwtlrmmNhdzF8SZsEeL-0-134c66c5b2ca788b9205c0eb0199c2e9)
复数的三种表示式及其相互关系如下所述。
代数式:z=a+bj
三角式:z=|z|(cosθ+jsinθ)
指数式:z=|z|ejθ
其中,a=|z|cosθ,b=|z|sinθ,{L-End} ,tanθ={L-End}
。
复数的运算:
z1 +z2 =(|z1|cosθ1 +|z2|cosθ2)+j(|z1|sinθ1 +|z2|sinθ2)
z1 ×z2 =|z1||z2|[cos(θ1 +θ2)+jsin(θ1 +θ2)]
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0011_0003.jpg?sign=1739298520-lzZyWrwXXSRWoM5vPHZpFvgmcmZenWBk-0-5753bec5a8847e160c8a20d5dd976b74)
10. 函数和坐标图
直线方程:y=ax+b
圆方程:(x-a)2 +(y-b)2 =r2
椭圆方程:{L-End}
双曲线方程:{L-End}
抛物线方程:y2 =4ax