深度学习:导读手册
(美)特伦斯·谢诺夫斯基更新时间:2019-04-17 09:16:29
最新章节:第三部分 深度学习要事年表开会员,本书8折购 >
全球科技巨头纷纷拥抱深度学习,自动驾驶、AI医疗、语音识别、图像识别、智能翻译以及震惊世界的AlphaGo,背后都是深度学习在发挥神奇的作用。深度学习是人工智能从概念到繁荣得以实现的主流技术。经过深度学习训练的计算机,不再被动按照指令运转,而是像自然进化的生命那样,开始自主地从经验中学习。本书作者特伦斯·谢诺夫斯基是全球人工智能十大科学家之一、深度学习先驱及奠基者,亲历了深度学习在20世纪70年代到90年代的寒冬。但他和一众开拓者,利用大数据和不断增强的计算能力,终于在神经网络算法上取得重大突破,实现了人工智能井喷式的发展。作为深度学习领域的通识作品,本书以恢弘的笔触,通过3个部分全景展现了深度学习的发展、演变与应用,首次以亲历者视角回溯了深度学习浪潮在过去60年间的发展脉络与人工智能的螺旋上升,并前瞻性地预测了智能时代的商业图景。
品牌:中信出版社
上架时间:2019-02-01 00:00:00
出版社:中信出版社
本书数字版权由中信出版社提供,并由其授权上海阅文信息技术有限公司制作发行
深度学习:导读手册最新章节
查看全部(美)特伦斯·谢诺夫斯基
主页
同类热门书
最新上架
- 会员
合成生物学智能化设计与应用
本书以人工智能技术在合成生物学领域的理论、方法及应用为主线,详细阐述人工智能在合成生物学不同层面设计中的应用进展,深入讨论人工智能在合成生物学实际应用中面临的挑战与困难。本书先概述合成生物学与人工智能基本概念以及发展简史,然后介绍人工智能技术在生物元件、生物模块、生物系统设计方面的应用,并通过案例展示了人工智能与合成生物学技术在生物医药领域的研究进展,最后分析了人工智能驱动合成生物技术的发展趋势,计算机23万字 - 会员
图分析与图机器学习:原理、算法与实践
本书向数据科学家、数据工程师、架构师和业务分析师展示了如何使用领先的图数据库模型TigerGraph,目标是向读者介绍图数据结构、图分析和图机器学习的概念、技术和工具。三位作者介绍了涵盖多种当代业务需求的真实使用案例。读者将探索从互联数据中获取价值的三阶段方法:连接、分析和学习。几乎每章的开头都列出了对应的三个方面的目标:学习图分析和机器学习的概念;用图分析解决特定问题;了解如何使用GSQL查询语计算机12.5万字 - 会员
Python视觉分析应用案例实战
本书以Python3.10.7为平台,以实际应用为背景,通过概念、公式、经典应用相结合的形式,深入浅出地介绍了Python图形图像处理经典实现。全书共10章,主要包括绪论、迈进Python、Python图形用户界面、数据可视化分析、图像视觉增强分析、图像视觉复原分析、图像视觉几何变换与校正分析、图像视觉分割技术分析、图像视觉描述与特征提取分析、车牌识别分析等内容。通过本书的学习,读者可领略到Py计算机12.3万字 - 会员
量子人工智能
量子计算与人工智能的交叉融合,促使量子人工智能的不断发展。本书旨在采用对深度学习爱好者友好的方式,构建量子人工智能应用。全书共13章,第1章和第2章系统介绍量子计算机发展脉络和量子计算编程的基础知识。第3~7章分别介绍不同的深度学习方法和在这些算法逻辑上构建量子启发算法的方式,用量子线路中的相位作为神经网络的可学习参数,重构为量子神经网络算子。这些算子可以在PyTorch环境中直接调用。第8章和第计算机7.6万字 - 会员
机器学习
机器学习是计算机科学与人工智能的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算计算机22.7万字 空间计算:人工智能驱动的新商业革命
空间计算是一种不断发展的以三维世界为中心的计算形式和交互形式,是以计算机视觉为基础的高阶应用。其核心是使用AI、计算机视觉和扩展现实将虚拟体验融入物理世界,让用户摆脱屏幕的束缚,自然地与数字世界中的对象互动,就像与真实世界中的对象互动一样。随着生成式AI的爆发,空间计算平台将拥有更加丰富的内容,将在很大程度上改变我们的生活和工作,重新定义商业模式,并改变我们与技术和整个世界互动的方式,推动我们进入计算机12.1万字- 会员
PyTorch 2.0深度学习从零开始学
PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中的框架之一。《PyTorch2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可计算机11.3万字 - 会员
破解深度学习(核心篇):模型算法与实现
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的核心知识、原理和内在逻辑。经过基础篇的学习,想必你已经对深度学习的总体框架有了初步的了解和认识,掌握了深度神经网络从核心概念、常见问题到典型网络的基本知识。本书为核心篇,将带领读者实现从入门到进阶、从理论到实战的跨越。全书共7章,前三章包括复杂CNN、RNN和注意力机制网络,深入详解各类主流模型及其变体;第4章介绍这三类基计算机13.4万字 - 会员
被算法操控的生活:重新定义精准广告、大数据和AI
这是一个“算法世界”:建立在数据之上的算法指导社会的运行、决定我们能在网上看到什么;它更是自动驾驶、智能管家、未来医疗以至智慧城市的基石。如果我们不了解算法如何使用数据,就无法知道人工智能将如何改变我们的生活。通过采访谷歌和剑桥分析公司的数据专家、亲自模拟高科技巨头的算法模型,萨普特带我们直击智能产品背后的秘密、思考数字科技给社会带来的风险。我们对科技和互联网的日益依赖,使数据研究者能够收集与我们计算机14.8万字
同类书籍最近更新