
会员
人工智能时代:未来已来
杨爱喜 卜向红 严家祥更新时间:2019-02-01 17:00:39
最新章节:“交流”可能是人工智能危机的开始开会员,本书免费读 >
本书深入浅出地介绍了人工智能历史和技术,对现阶段人工智能技术的应用成果进行了展示、解读,让读者在详细了解人工智能发展历史的基础上,清晰认知人工智能的关键技术。本书适合人工智能研究者,以及对人工智能感兴趣的读者阅读。
品牌:人邮图书
上架时间:2018-04-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
人工智能时代:未来已来最新章节
查看全部- “交流”可能是人工智能危机的开始
- 人工智能发展的道德困境
- 你的“饭碗”将会被人工智能打碎
- 马斯克与扎克伯格的“论战”
- 第九章 人工智能时代的生存焦虑
- 亚马逊:悄然建立的人工智能帝国
- 英特尔与微软:人工智能时代的转型发展
- Google:强大的人工智能巨头
- IBM:人工智能的方向在哪里
- 人工智能浪潮汹涌而至
杨爱喜 卜向红 严家祥
主页
同类热门书
最新上架
制造业大模型的构建与实践
本书分两篇,为读者提供基于制造业视角的大模型理论与应用指南。基础篇深入大模型理论层面,主要介绍大模型的基础知识、构建路径、价值对齐策略,同时涉及多模态与AIGC技术、提示词工程的相关知识。应用篇则聚焦于大模型的实践应用层面,主要讲解垂直制造领域微调、RAG等构建技术,AIAgent的原理与应用,以及大模型压缩与部署策略,并且通过具体案例来展示大模型在工业制造及设备运维等方面的应用,最后对大模型进行计算机18.3万字- 会员
硅基物语·AI写作高手:从零开始用ChatGPT学会写作
本书从写作与ChatGPT的基础知识讲起,结合创作者的实际写作经历与写作教学经历,介绍了用ChatGPT写作的基础技巧、进阶写作的方法、不同文体的写作方法、写作变现的秘诀,让读者理解写作技巧与变现思路。计算机14.7万字 - 会员
设计深度学习系统
本书主要从软件开发者的角度探讨如何构建和设计深度学习系统。作者首先描述一个典型的深度学习系统的整体,包括其主要组件以及它们之间的连接方式,然后在各个单独的章节中深入探讨这些主要组件。对于具体介绍的章节,会在开始时讨论需求,接着介绍设计原则和示例服务/代码,并评估开源解决方案。通过阅读本书,读者将能够了解深度学习系统的工作原理,以及如何开发每个组件。本书的主要读者对象是想要从事深度学习平台工作或将一计算机18.1万字 - 会员
AI时代架构师修炼之道:ChatGPT让架构师插上翅膀
本书以ChatGPT为核心工具,揭示了人工智能技术对架构师的角色和职责进行颠覆和重塑的关键点。全书通过共计13章的系统内容,探讨AI技术在架构设计中的应用,以及AI对传统架构师工作方式的影响,读者可以了解如何利用ChatGPT这一强大的智能辅助工具,提升架构师的工作效率和创造力。计算机7字 - 会员
深度学习与大模型基础
本书从基础的神经网络、卷积神经网络、循环神经网络等入门知识,到深度学习的应用领域如计算机视觉、自然语言处理等高级主题都有涉及,可以帮助读者更好地理解深度学习知识,并为未来的职业发展打下坚实的基础。计算机23.6万字 - 会员
AI时代产品经理升级之道:ChatGPT让产品经理插上翅膀
本书是一本面向产品经理的实用新书,分12章探讨如何用ChatGPT提升产品管理工作的效率和质量。第1章介绍了人工智能对产品管理的影响;第2章介绍用ChatGPT提高文档写作效率;第3章介绍用ChatGPT进行竞品和市场分析;第4章介绍用ChatGPT优化需求管理;第5章介绍用ChatGPT分析产品数据;第6章介绍用ChatGPT改进用户体验;第7章介绍用ChatGPT设计产品原型;第8章介绍用Ch计算机11.5万字 人工智能与计算生物的未来
这是一本探讨人工智能与生物技术的融合颠覆传统医疗,并会对未来药物研发产生重大影响的书。作者凭借其在生物科学方面的专业背景,以及在生物技术和制药行业的从业经验,为读者呈现了对于医疗科技这一前沿领域的深刻见解。书中首先概述了数据科学方法的兴起以及生物学领域的范式转变,这一转变催生了计算生物学的革命,即通过计算机模拟进行生物实验和药物研发。作者详细介绍了人工智能和深度学习领域的重大突破,并探讨了这些技术计算机18.6万字- 会员
社交网络信息传播模型、算法及应用
本书系统地阐述信息传播问题中所涉及的各种传播模型、数学优化方法以及计算方法等,并通过对大量信息传播的实际问题进行了建模与分析。该著作将为人工智能、大数据、管理科学、运筹学、人文社会科学等领域开展相关研究的本科生、研究生以及学者提供重要的参考。计算机16万字 - 会员
人工智能算法基础
本书分为4章,共20章。其中第1篇为基础算法篇,从第1章到第9章,讲述排序、查找、线性结构、树、散列、图、堆栈等基本数据结构算法;第2篇为机器学习算法篇,从第10章到第14章,讲述分类算法、回归算法、聚类算法、降维算法和集成学习算法;第3篇为强化学习算法篇,从第15章到第16章,讲述基于价值的强化学习算法和基于策略的强化学习算法;第4篇为深度学习算法篇,从第17章到第19章,讲述神经网络模型算法、计算机0字